Citrobacter freundii Methionine γ-Lyase: The Role of Serine 339 in the Catalysis of γ- and β-Elimination Reactions
Serine 339 of the active site of Citrobacter freundii methionine γ-lyase (MGL) is a conserved amino acid in most pyridoxal 5’-phosphate-dependent enzymes of the cystathionine β-lyase subclass, to which MGL belongs. The reaction mechanism of the MGL-catalyzed γ-elimination reaction is poorly explored...
Gespeichert in:
Veröffentlicht in: | Actanaturae 2022-04, Vol.14 (2), p.50-61 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Serine 339 of the active site of
Citrobacter freundii
methionine γ-lyase (MGL) is a conserved amino acid in most
pyridoxal 5’-phosphate-dependent enzymes of the cystathionine
β-lyase subclass, to which MGL belongs. The reaction mechanism of the
MGL-catalyzed γ-elimination reaction is poorly explored. We replaced
serine 339 with alanine using site-directed mutagenesis. The replacement of
serine 339 with alanine led to a significant (by two orders of magnitude)
decrease in efficiency in the catalysis of the γ- and β-elimination
reactions by the mutant form of the enzyme. The exchange rates of the C-α-
and C-β-protons in the amino acids in complexes consisting of the enzyme
and competitive inhibitors decreased by one-two orders of magnitude. The
spectral characteristics of the mutant form indicated that the replacement did
not lead to significant changes in the conformation and tautomerism of MGL
internal aldimine. We crystallized the holoenzyme and determined its spatial
structure at 1.7 E resolution. The replacement of serine 339 with alanine did
not affect the overall course of the polypeptide chain of the MGL subunit and
the tetrameric enzyme structure. An analysis of the obtained kinetic and
spectral data, as well as the known spatial structures of
C. freundii
MGL, indicates that serine 339 is necessary for efficient catalysis of
γ- and β-elimination reactions at the stage of C-α-proton
abstraction from the external aldimine, the γ-elimination reaction at the
stages of coenzyme C4’-atom protonation, and C-β-proton abstraction
from a ketimine intermediate. |
---|---|
ISSN: | 2075-8251 |
DOI: | 10.32607/actanaturae.11242 |