LDLE: Low Distortion Local Eigenmaps

We present Low Distortion Local Eigenmaps (LDLE), a manifold learning technique which constructs a set of low distortion local views of a data set in lower dimension and registers them to obtain a global embedding. The local views are constructed using the global eigenvectors of the graph Laplacian...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of machine learning research 2021-01, Vol.22
Hauptverfasser: Kohli, Dhruv, Cloninger, Alexander, Mishne, Gal
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of machine learning research
container_volume 22
creator Kohli, Dhruv
Cloninger, Alexander
Mishne, Gal
description We present Low Distortion Local Eigenmaps (LDLE), a manifold learning technique which constructs a set of low distortion local views of a data set in lower dimension and registers them to obtain a global embedding. The local views are constructed using the global eigenvectors of the graph Laplacian and are registered using Procrustes analysis. The choice of these eigenvectors may vary across the regions. In contrast to existing techniques, LDLE can embed closed and non-orientable manifolds into their intrinsic dimension by tearing them apart. It also provides gluing instruction on the boundary of the torn embedding to help identify the topology of the original manifold. Our experimental results will show that LDLE largely preserved distances up to a constant scale while other techniques produced higher distortion. We also demonstrate that LDLE produces high quality embeddings even when the data is noisy or sparse.
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9307127</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2694420293</sourcerecordid><originalsourceid>FETCH-LOGICAL-p181t-7a78cde636d2f0c4c81d25e2881dc1a8323bd11931a93f3aed3b6abe0616a1333</originalsourceid><addsrcrecordid>eNpVkE1LxDAQhoMo7rr6F6QHD14KSaZNUg-C7NYPKHjRc5im6Rppm9q0iv_eqqvo6Z3hhedhZo8sWQoQy4yr_a-Zx0kC6YIchfBMKZMpF4dkAamSQCVfkrNiU-QXUeHfoo0Lox9G57t5NdhEudvarsU-HJODGptgT3a5Io_X-cP6Ni7ub-7WV0XcM8XGWKJUprICRMVrahKjWMVTy9WchqECDmXFWAYMM6gBbQWlwNJSwQQyAFiRy29uP5WtrYztxgEb3Q-uxeFde3T6f9O5J731rzqbj2FczoDzHWDwL5MNo25dMLZpsLN-CpqLLEk45dmn6_Sv61fy8xr4AIkFX8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2694420293</pqid></control><display><type>article</type><title>LDLE: Low Distortion Local Eigenmaps</title><source>ACM Digital Library Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Kohli, Dhruv ; Cloninger, Alexander ; Mishne, Gal</creator><creatorcontrib>Kohli, Dhruv ; Cloninger, Alexander ; Mishne, Gal</creatorcontrib><description>We present Low Distortion Local Eigenmaps (LDLE), a manifold learning technique which constructs a set of low distortion local views of a data set in lower dimension and registers them to obtain a global embedding. The local views are constructed using the global eigenvectors of the graph Laplacian and are registered using Procrustes analysis. The choice of these eigenvectors may vary across the regions. In contrast to existing techniques, LDLE can embed closed and non-orientable manifolds into their intrinsic dimension by tearing them apart. It also provides gluing instruction on the boundary of the torn embedding to help identify the topology of the original manifold. Our experimental results will show that LDLE largely preserved distances up to a constant scale while other techniques produced higher distortion. We also demonstrate that LDLE produces high quality embeddings even when the data is noisy or sparse.</description><identifier>ISSN: 1532-4435</identifier><identifier>EISSN: 1533-7928</identifier><identifier>PMID: 35873072</identifier><language>eng</language><publisher>United States</publisher><ispartof>Journal of machine learning research, 2021-01, Vol.22</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35873072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kohli, Dhruv</creatorcontrib><creatorcontrib>Cloninger, Alexander</creatorcontrib><creatorcontrib>Mishne, Gal</creatorcontrib><title>LDLE: Low Distortion Local Eigenmaps</title><title>Journal of machine learning research</title><addtitle>J Mach Learn Res</addtitle><description>We present Low Distortion Local Eigenmaps (LDLE), a manifold learning technique which constructs a set of low distortion local views of a data set in lower dimension and registers them to obtain a global embedding. The local views are constructed using the global eigenvectors of the graph Laplacian and are registered using Procrustes analysis. The choice of these eigenvectors may vary across the regions. In contrast to existing techniques, LDLE can embed closed and non-orientable manifolds into their intrinsic dimension by tearing them apart. It also provides gluing instruction on the boundary of the torn embedding to help identify the topology of the original manifold. Our experimental results will show that LDLE largely preserved distances up to a constant scale while other techniques produced higher distortion. We also demonstrate that LDLE produces high quality embeddings even when the data is noisy or sparse.</description><issn>1532-4435</issn><issn>1533-7928</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpVkE1LxDAQhoMo7rr6F6QHD14KSaZNUg-C7NYPKHjRc5im6Rppm9q0iv_eqqvo6Z3hhedhZo8sWQoQy4yr_a-Zx0kC6YIchfBMKZMpF4dkAamSQCVfkrNiU-QXUeHfoo0Lox9G57t5NdhEudvarsU-HJODGptgT3a5Io_X-cP6Ni7ub-7WV0XcM8XGWKJUprICRMVrahKjWMVTy9WchqECDmXFWAYMM6gBbQWlwNJSwQQyAFiRy29uP5WtrYztxgEb3Q-uxeFde3T6f9O5J731rzqbj2FczoDzHWDwL5MNo25dMLZpsLN-CpqLLEk45dmn6_Sv61fy8xr4AIkFX8g</recordid><startdate>202101</startdate><enddate>202101</enddate><creator>Kohli, Dhruv</creator><creator>Cloninger, Alexander</creator><creator>Mishne, Gal</creator><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>202101</creationdate><title>LDLE: Low Distortion Local Eigenmaps</title><author>Kohli, Dhruv ; Cloninger, Alexander ; Mishne, Gal</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p181t-7a78cde636d2f0c4c81d25e2881dc1a8323bd11931a93f3aed3b6abe0616a1333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kohli, Dhruv</creatorcontrib><creatorcontrib>Cloninger, Alexander</creatorcontrib><creatorcontrib>Mishne, Gal</creatorcontrib><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of machine learning research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kohli, Dhruv</au><au>Cloninger, Alexander</au><au>Mishne, Gal</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>LDLE: Low Distortion Local Eigenmaps</atitle><jtitle>Journal of machine learning research</jtitle><addtitle>J Mach Learn Res</addtitle><date>2021-01</date><risdate>2021</risdate><volume>22</volume><issn>1532-4435</issn><eissn>1533-7928</eissn><abstract>We present Low Distortion Local Eigenmaps (LDLE), a manifold learning technique which constructs a set of low distortion local views of a data set in lower dimension and registers them to obtain a global embedding. The local views are constructed using the global eigenvectors of the graph Laplacian and are registered using Procrustes analysis. The choice of these eigenvectors may vary across the regions. In contrast to existing techniques, LDLE can embed closed and non-orientable manifolds into their intrinsic dimension by tearing them apart. It also provides gluing instruction on the boundary of the torn embedding to help identify the topology of the original manifold. Our experimental results will show that LDLE largely preserved distances up to a constant scale while other techniques produced higher distortion. We also demonstrate that LDLE produces high quality embeddings even when the data is noisy or sparse.</abstract><cop>United States</cop><pmid>35873072</pmid></addata></record>
fulltext fulltext
identifier ISSN: 1532-4435
ispartof Journal of machine learning research, 2021-01, Vol.22
issn 1532-4435
1533-7928
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9307127
source ACM Digital Library Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title LDLE: Low Distortion Local Eigenmaps
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=LDLE:%20Low%20Distortion%20Local%20Eigenmaps&rft.jtitle=Journal%20of%20machine%20learning%20research&rft.au=Kohli,%20Dhruv&rft.date=2021-01&rft.volume=22&rft.issn=1532-4435&rft.eissn=1533-7928&rft_id=info:doi/&rft_dat=%3Cproquest_pubme%3E2694420293%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2694420293&rft_id=info:pmid/35873072&rfr_iscdi=true