Molecularly Engineered Covalent Organic Frameworks for Hydrogen Peroxide Photosynthesis

Synthesizing H2O2 from water and air via a photocatalytic approach is ideal for efficient production of this chemical at small‐scale. However, the poor activity and selectivity of the 2 e− water oxidation reaction (WOR) greatly restricts the efficiency of photocatalytic H2O2 production. Herein we pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2022-05, Vol.61 (19), p.e202200413-n/a
Hauptverfasser: Kou, Mingpu, Wang, Yongye, Xu, Yixue, Ye, Liqun, Huang, Yingping, Jia, Baohua, Li, Hui, Ren, Jiaqi, Deng, Yu, Chen, Jiahao, Zhou, Ying, Lei, Kai, Wang, Li, Liu, Wei, Huang, Hongwei, Ma, Tianyi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 19
container_start_page e202200413
container_title Angewandte Chemie International Edition
container_volume 61
creator Kou, Mingpu
Wang, Yongye
Xu, Yixue
Ye, Liqun
Huang, Yingping
Jia, Baohua
Li, Hui
Ren, Jiaqi
Deng, Yu
Chen, Jiahao
Zhou, Ying
Lei, Kai
Wang, Li
Liu, Wei
Huang, Hongwei
Ma, Tianyi
description Synthesizing H2O2 from water and air via a photocatalytic approach is ideal for efficient production of this chemical at small‐scale. However, the poor activity and selectivity of the 2 e− water oxidation reaction (WOR) greatly restricts the efficiency of photocatalytic H2O2 production. Herein we prepare a bipyridine‐based covalent organic framework photocatalyst (denoted as COF‐TfpBpy) for H2O2 production from water and air. The solar‐to‐chemical conversion (SCC) efficiency at 298 K and 333 K is 0.57 % and 1.08 %, respectively, which are higher than the current reported highest value. The resulting H2O2 solution is capable of degrading pollutants. A mechanistic study revealed that the excellent photocatalytic activity of COF‐TfpBpy is due to the protonation of bipyridine monomer, which promotes the rate‐determining reaction (2 e− WOR) and then enhances Yeager‐type oxygen adsorption to accelerate 2 e− one‐step oxygen reduction. This work demonstrates, for the first time, the COF‐catalyzed photosynthesis of H2O2 from water and air; and paves the way for wastewater treatment using photocatalytic H2O2 solution. A bipyridine‐based covalent organic framework photocatalyst (COF‐TfpBpy) showed excellent activity for H2O2 photosynthesis with a solar‐to‐chemical conversion efficiency of 0.57 % at 298 K and 1.08 % at 333 K. The photocatalytic process involves a 2 e− water oxidation and 2 e− oxygen reduction from water and air. The photocatalytic H2O2 solution can be directly used for Rhodamine B degradation and sterilization of E. coli.
doi_str_mv 10.1002/anie.202200413
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9305556</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2653968457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5343-6b66640ed889ff6adf297dbaf7bd75bfd06abbaa95a63d585e6dee54544db9023</originalsourceid><addsrcrecordid>eNqFkUtP3DAURq2qqFDabZdVpG7YZOrYuU68qYRGw0OiwKKIpeXENzOmHpvaEyD_vkZDp49NV7bkc4-_q4-QDxWdVZSyz9pbnDHKGKV1xV-RgwpYVfKm4a_zvea8bFqo9snblO4y37ZUvCH7HCohagYH5PZrcNiPTkc3FQu_tB4xoinm4UE79JviKi7zH31xEvUaH0P8noohxOJsMjEs0RfXGMOTNVhcr8ImpMlvVphsekf2Bu0Svn85D8nNyeLb_Ky8uDo9nx9flD3wmpeiEzkIRdO2chiENgOTjen00HSmgW4wVOiu01qCFtxACygMItRQ16aTlPFD8mXrvR-7NZo-R47aqfto1zpOKmir_n7xdqWW4UFJTgFAZMHRiyCGHyOmjVrb1KNz2mMYk2KCSQpSMpnRT_-gd2GMPq-XKeBStDU0mZptqT6GlCIOuzAVVc-dqefO1K6zPPDxzxV2-K-SMiC3wKN1OP1Hp44vzxe_5T8B4zil6g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2653968457</pqid></control><display><type>article</type><title>Molecularly Engineered Covalent Organic Frameworks for Hydrogen Peroxide Photosynthesis</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Kou, Mingpu ; Wang, Yongye ; Xu, Yixue ; Ye, Liqun ; Huang, Yingping ; Jia, Baohua ; Li, Hui ; Ren, Jiaqi ; Deng, Yu ; Chen, Jiahao ; Zhou, Ying ; Lei, Kai ; Wang, Li ; Liu, Wei ; Huang, Hongwei ; Ma, Tianyi</creator><creatorcontrib>Kou, Mingpu ; Wang, Yongye ; Xu, Yixue ; Ye, Liqun ; Huang, Yingping ; Jia, Baohua ; Li, Hui ; Ren, Jiaqi ; Deng, Yu ; Chen, Jiahao ; Zhou, Ying ; Lei, Kai ; Wang, Li ; Liu, Wei ; Huang, Hongwei ; Ma, Tianyi</creatorcontrib><description>Synthesizing H2O2 from water and air via a photocatalytic approach is ideal for efficient production of this chemical at small‐scale. However, the poor activity and selectivity of the 2 e− water oxidation reaction (WOR) greatly restricts the efficiency of photocatalytic H2O2 production. Herein we prepare a bipyridine‐based covalent organic framework photocatalyst (denoted as COF‐TfpBpy) for H2O2 production from water and air. The solar‐to‐chemical conversion (SCC) efficiency at 298 K and 333 K is 0.57 % and 1.08 %, respectively, which are higher than the current reported highest value. The resulting H2O2 solution is capable of degrading pollutants. A mechanistic study revealed that the excellent photocatalytic activity of COF‐TfpBpy is due to the protonation of bipyridine monomer, which promotes the rate‐determining reaction (2 e− WOR) and then enhances Yeager‐type oxygen adsorption to accelerate 2 e− one‐step oxygen reduction. This work demonstrates, for the first time, the COF‐catalyzed photosynthesis of H2O2 from water and air; and paves the way for wastewater treatment using photocatalytic H2O2 solution. A bipyridine‐based covalent organic framework photocatalyst (COF‐TfpBpy) showed excellent activity for H2O2 photosynthesis with a solar‐to‐chemical conversion efficiency of 0.57 % at 298 K and 1.08 % at 333 K. The photocatalytic process involves a 2 e− water oxidation and 2 e− oxygen reduction from water and air. The photocatalytic H2O2 solution can be directly used for Rhodamine B degradation and sterilization of E. coli.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202200413</identifier><identifier>PMID: 35166425</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Bipyridine ; Catalytic activity ; COFs ; Environmental Chemistry ; H2O2 ; Hydrogen peroxide ; Hydrogen Peroxide - chemical synthesis ; Metal-Organic Frameworks ; Oxidation ; Oxygen ; Photocatalysis ; Photosynthesis ; Pollutants ; Protonation ; Selectivity ; Wastewater treatment ; Water</subject><ispartof>Angewandte Chemie International Edition, 2022-05, Vol.61 (19), p.e202200413-n/a</ispartof><rights>2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2022 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5343-6b66640ed889ff6adf297dbaf7bd75bfd06abbaa95a63d585e6dee54544db9023</citedby><cites>FETCH-LOGICAL-c5343-6b66640ed889ff6adf297dbaf7bd75bfd06abbaa95a63d585e6dee54544db9023</cites><orcidid>0000-0002-1042-8700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202200413$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202200413$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35166425$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kou, Mingpu</creatorcontrib><creatorcontrib>Wang, Yongye</creatorcontrib><creatorcontrib>Xu, Yixue</creatorcontrib><creatorcontrib>Ye, Liqun</creatorcontrib><creatorcontrib>Huang, Yingping</creatorcontrib><creatorcontrib>Jia, Baohua</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Ren, Jiaqi</creatorcontrib><creatorcontrib>Deng, Yu</creatorcontrib><creatorcontrib>Chen, Jiahao</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Lei, Kai</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Huang, Hongwei</creatorcontrib><creatorcontrib>Ma, Tianyi</creatorcontrib><title>Molecularly Engineered Covalent Organic Frameworks for Hydrogen Peroxide Photosynthesis</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Synthesizing H2O2 from water and air via a photocatalytic approach is ideal for efficient production of this chemical at small‐scale. However, the poor activity and selectivity of the 2 e− water oxidation reaction (WOR) greatly restricts the efficiency of photocatalytic H2O2 production. Herein we prepare a bipyridine‐based covalent organic framework photocatalyst (denoted as COF‐TfpBpy) for H2O2 production from water and air. The solar‐to‐chemical conversion (SCC) efficiency at 298 K and 333 K is 0.57 % and 1.08 %, respectively, which are higher than the current reported highest value. The resulting H2O2 solution is capable of degrading pollutants. A mechanistic study revealed that the excellent photocatalytic activity of COF‐TfpBpy is due to the protonation of bipyridine monomer, which promotes the rate‐determining reaction (2 e− WOR) and then enhances Yeager‐type oxygen adsorption to accelerate 2 e− one‐step oxygen reduction. This work demonstrates, for the first time, the COF‐catalyzed photosynthesis of H2O2 from water and air; and paves the way for wastewater treatment using photocatalytic H2O2 solution. A bipyridine‐based covalent organic framework photocatalyst (COF‐TfpBpy) showed excellent activity for H2O2 photosynthesis with a solar‐to‐chemical conversion efficiency of 0.57 % at 298 K and 1.08 % at 333 K. The photocatalytic process involves a 2 e− water oxidation and 2 e− oxygen reduction from water and air. The photocatalytic H2O2 solution can be directly used for Rhodamine B degradation and sterilization of E. coli.</description><subject>Bipyridine</subject><subject>Catalytic activity</subject><subject>COFs</subject><subject>Environmental Chemistry</subject><subject>H2O2</subject><subject>Hydrogen peroxide</subject><subject>Hydrogen Peroxide - chemical synthesis</subject><subject>Metal-Organic Frameworks</subject><subject>Oxidation</subject><subject>Oxygen</subject><subject>Photocatalysis</subject><subject>Photosynthesis</subject><subject>Pollutants</subject><subject>Protonation</subject><subject>Selectivity</subject><subject>Wastewater treatment</subject><subject>Water</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkUtP3DAURq2qqFDabZdVpG7YZOrYuU68qYRGw0OiwKKIpeXENzOmHpvaEyD_vkZDp49NV7bkc4-_q4-QDxWdVZSyz9pbnDHKGKV1xV-RgwpYVfKm4a_zvea8bFqo9snblO4y37ZUvCH7HCohagYH5PZrcNiPTkc3FQu_tB4xoinm4UE79JviKi7zH31xEvUaH0P8noohxOJsMjEs0RfXGMOTNVhcr8ImpMlvVphsekf2Bu0Svn85D8nNyeLb_Ky8uDo9nx9flD3wmpeiEzkIRdO2chiENgOTjen00HSmgW4wVOiu01qCFtxACygMItRQ16aTlPFD8mXrvR-7NZo-R47aqfto1zpOKmir_n7xdqWW4UFJTgFAZMHRiyCGHyOmjVrb1KNz2mMYk2KCSQpSMpnRT_-gd2GMPq-XKeBStDU0mZptqT6GlCIOuzAVVc-dqefO1K6zPPDxzxV2-K-SMiC3wKN1OP1Hp44vzxe_5T8B4zil6g</recordid><startdate>20220502</startdate><enddate>20220502</enddate><creator>Kou, Mingpu</creator><creator>Wang, Yongye</creator><creator>Xu, Yixue</creator><creator>Ye, Liqun</creator><creator>Huang, Yingping</creator><creator>Jia, Baohua</creator><creator>Li, Hui</creator><creator>Ren, Jiaqi</creator><creator>Deng, Yu</creator><creator>Chen, Jiahao</creator><creator>Zhou, Ying</creator><creator>Lei, Kai</creator><creator>Wang, Li</creator><creator>Liu, Wei</creator><creator>Huang, Hongwei</creator><creator>Ma, Tianyi</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1042-8700</orcidid></search><sort><creationdate>20220502</creationdate><title>Molecularly Engineered Covalent Organic Frameworks for Hydrogen Peroxide Photosynthesis</title><author>Kou, Mingpu ; Wang, Yongye ; Xu, Yixue ; Ye, Liqun ; Huang, Yingping ; Jia, Baohua ; Li, Hui ; Ren, Jiaqi ; Deng, Yu ; Chen, Jiahao ; Zhou, Ying ; Lei, Kai ; Wang, Li ; Liu, Wei ; Huang, Hongwei ; Ma, Tianyi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5343-6b66640ed889ff6adf297dbaf7bd75bfd06abbaa95a63d585e6dee54544db9023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Bipyridine</topic><topic>Catalytic activity</topic><topic>COFs</topic><topic>Environmental Chemistry</topic><topic>H2O2</topic><topic>Hydrogen peroxide</topic><topic>Hydrogen Peroxide - chemical synthesis</topic><topic>Metal-Organic Frameworks</topic><topic>Oxidation</topic><topic>Oxygen</topic><topic>Photocatalysis</topic><topic>Photosynthesis</topic><topic>Pollutants</topic><topic>Protonation</topic><topic>Selectivity</topic><topic>Wastewater treatment</topic><topic>Water</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kou, Mingpu</creatorcontrib><creatorcontrib>Wang, Yongye</creatorcontrib><creatorcontrib>Xu, Yixue</creatorcontrib><creatorcontrib>Ye, Liqun</creatorcontrib><creatorcontrib>Huang, Yingping</creatorcontrib><creatorcontrib>Jia, Baohua</creatorcontrib><creatorcontrib>Li, Hui</creatorcontrib><creatorcontrib>Ren, Jiaqi</creatorcontrib><creatorcontrib>Deng, Yu</creatorcontrib><creatorcontrib>Chen, Jiahao</creatorcontrib><creatorcontrib>Zhou, Ying</creatorcontrib><creatorcontrib>Lei, Kai</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Liu, Wei</creatorcontrib><creatorcontrib>Huang, Hongwei</creatorcontrib><creatorcontrib>Ma, Tianyi</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kou, Mingpu</au><au>Wang, Yongye</au><au>Xu, Yixue</au><au>Ye, Liqun</au><au>Huang, Yingping</au><au>Jia, Baohua</au><au>Li, Hui</au><au>Ren, Jiaqi</au><au>Deng, Yu</au><au>Chen, Jiahao</au><au>Zhou, Ying</au><au>Lei, Kai</au><au>Wang, Li</au><au>Liu, Wei</au><au>Huang, Hongwei</au><au>Ma, Tianyi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecularly Engineered Covalent Organic Frameworks for Hydrogen Peroxide Photosynthesis</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-05-02</date><risdate>2022</risdate><volume>61</volume><issue>19</issue><spage>e202200413</spage><epage>n/a</epage><pages>e202200413-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Synthesizing H2O2 from water and air via a photocatalytic approach is ideal for efficient production of this chemical at small‐scale. However, the poor activity and selectivity of the 2 e− water oxidation reaction (WOR) greatly restricts the efficiency of photocatalytic H2O2 production. Herein we prepare a bipyridine‐based covalent organic framework photocatalyst (denoted as COF‐TfpBpy) for H2O2 production from water and air. The solar‐to‐chemical conversion (SCC) efficiency at 298 K and 333 K is 0.57 % and 1.08 %, respectively, which are higher than the current reported highest value. The resulting H2O2 solution is capable of degrading pollutants. A mechanistic study revealed that the excellent photocatalytic activity of COF‐TfpBpy is due to the protonation of bipyridine monomer, which promotes the rate‐determining reaction (2 e− WOR) and then enhances Yeager‐type oxygen adsorption to accelerate 2 e− one‐step oxygen reduction. This work demonstrates, for the first time, the COF‐catalyzed photosynthesis of H2O2 from water and air; and paves the way for wastewater treatment using photocatalytic H2O2 solution. A bipyridine‐based covalent organic framework photocatalyst (COF‐TfpBpy) showed excellent activity for H2O2 photosynthesis with a solar‐to‐chemical conversion efficiency of 0.57 % at 298 K and 1.08 % at 333 K. The photocatalytic process involves a 2 e− water oxidation and 2 e− oxygen reduction from water and air. The photocatalytic H2O2 solution can be directly used for Rhodamine B degradation and sterilization of E. coli.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>35166425</pmid><doi>10.1002/anie.202200413</doi><tpages>10</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0002-1042-8700</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2022-05, Vol.61 (19), p.e202200413-n/a
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9305556
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Bipyridine
Catalytic activity
COFs
Environmental Chemistry
H2O2
Hydrogen peroxide
Hydrogen Peroxide - chemical synthesis
Metal-Organic Frameworks
Oxidation
Oxygen
Photocatalysis
Photosynthesis
Pollutants
Protonation
Selectivity
Wastewater treatment
Water
title Molecularly Engineered Covalent Organic Frameworks for Hydrogen Peroxide Photosynthesis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T01%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecularly%20Engineered%20Covalent%20Organic%20Frameworks%20for%20Hydrogen%20Peroxide%20Photosynthesis&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Kou,%20Mingpu&rft.date=2022-05-02&rft.volume=61&rft.issue=19&rft.spage=e202200413&rft.epage=n/a&rft.pages=e202200413-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202200413&rft_dat=%3Cproquest_pubme%3E2653968457%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2653968457&rft_id=info:pmid/35166425&rfr_iscdi=true