Synergistic Effects of Surface Coating and Bulk Doping in Ni‐Rich Lithium Nickel Cobalt Manganese Oxide Cathode Materials for High‐Energy Lithium Ion Batteries

Ni‐rich layered oxide cathodes are promising candidates to satisfy the increasing energy demand of lithium‐ion batteries for automotive applications. Thermal and cycling stability issues originating from increasing Ni contents are addressed by mitigation strategies such as elemental bulk substitutio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2022-02, Vol.15 (4), p.e202102220-n/a
Hauptverfasser: Reissig, Friederike, Lange, Martin Alexander, Haneke, Lukas, Placke, Tobias, Zeier, Wolfgang G., Winter, Martin, Schmuch, Richard, Gomez‐Martin, Aurora
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e202102220
container_title ChemSusChem
container_volume 15
creator Reissig, Friederike
Lange, Martin Alexander
Haneke, Lukas
Placke, Tobias
Zeier, Wolfgang G.
Winter, Martin
Schmuch, Richard
Gomez‐Martin, Aurora
description Ni‐rich layered oxide cathodes are promising candidates to satisfy the increasing energy demand of lithium‐ion batteries for automotive applications. Thermal and cycling stability issues originating from increasing Ni contents are addressed by mitigation strategies such as elemental bulk substitution (“doping”) and surface coating. Although both approaches separately benefit the cycling stability, there are only few reports investigating the combination of two of such approaches. Herein, the combination of Zr as common dopant in commercial materials with effective Li2WO4 and WO3 coatings was investigated with special focus on the impact of different material processing conditions on structural parameters and electrochemical performance in nickel‐cobalt‐manganese (NCM) || graphite cells. Results indicated that the Zr4+ dopant diffusing to the surface during annealing improved the electrochemical performance compared to samples without additional coatings. This work emphasizes the importance to not only investigate the effect of individual dopants or coatings but also the influences between both. (I can't get no) satisfaction: Ni‐rich nickel‐cobalt‐manganese (NCM)‐type layered oxide materials are promising candidates to satisfy the increasing energy demand of lithium‐ion batteries for automotive applications but have major drawbacks in terms of mechanical stability and cycling stability. Herein, the challenges of combining two mitigation strategies (i. e., Zr4+ doping and W6+ coating), their synergistic effects, and the importance of investigating heat‐treated references are reported.
doi_str_mv 10.1002/cssc.202102220
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9300204</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2598080240</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4680-b8ed48505eba9b1b7ad8fa2cc88b7f1139234352cc508633b3704c17deed02303</originalsourceid><addsrcrecordid>eNqFkctu1DAUhi0EoqWwZYkssWEzg29JnA0SDQOtNKUSAxI7y3GcxG3GntoOMDsegXfgzXgSHE0Jlw2r48vnzz7-AXiM0RIjRJ6rENSSIIIRIQTdAceY52yR5ezj3XlM8RF4EMIVQjkq8_w-OKKs4Axjfgy-b_ZW-86EaBRcta1WMUDXws3oW6k0rJyMxnZQ2gaejsM1fOV209xY-Nb8-PrtnVE9XJvYm3GbVtS1HtKZWg4RXkjbSauDhpdfTJNUMvYu1QsZtTdyCLB1Hp6Zrk-e1fSK_Ww6dxaeyjiBOjwE99qE60e39QR8eL16X50t1pdvzquX64ViOUeLmuuG8QxlupZljetCNryVRCnO66LFmJaEMpqlhQzxnNKaFogpXDRaN4hQRE_Ai4N3N9Zb3Shto5eD2HmzlX4vnDTi7x1retG5T6KkKQrEkuDZrcC7m1GHKLYmKD0M6RvcGATJSo44Imy66-k_6JUbvU3tCZICKznjlCdqeaCUdyF43c6PwUhM-YspfzHnnw48-bOFGf8VeALKA_DZDHr_H52oNpvqt_wnEYnAjw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2631984838</pqid></control><display><type>article</type><title>Synergistic Effects of Surface Coating and Bulk Doping in Ni‐Rich Lithium Nickel Cobalt Manganese Oxide Cathode Materials for High‐Energy Lithium Ion Batteries</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Reissig, Friederike ; Lange, Martin Alexander ; Haneke, Lukas ; Placke, Tobias ; Zeier, Wolfgang G. ; Winter, Martin ; Schmuch, Richard ; Gomez‐Martin, Aurora</creator><creatorcontrib>Reissig, Friederike ; Lange, Martin Alexander ; Haneke, Lukas ; Placke, Tobias ; Zeier, Wolfgang G. ; Winter, Martin ; Schmuch, Richard ; Gomez‐Martin, Aurora</creatorcontrib><description>Ni‐rich layered oxide cathodes are promising candidates to satisfy the increasing energy demand of lithium‐ion batteries for automotive applications. Thermal and cycling stability issues originating from increasing Ni contents are addressed by mitigation strategies such as elemental bulk substitution (“doping”) and surface coating. Although both approaches separately benefit the cycling stability, there are only few reports investigating the combination of two of such approaches. Herein, the combination of Zr as common dopant in commercial materials with effective Li2WO4 and WO3 coatings was investigated with special focus on the impact of different material processing conditions on structural parameters and electrochemical performance in nickel‐cobalt‐manganese (NCM) || graphite cells. Results indicated that the Zr4+ dopant diffusing to the surface during annealing improved the electrochemical performance compared to samples without additional coatings. This work emphasizes the importance to not only investigate the effect of individual dopants or coatings but also the influences between both. (I can't get no) satisfaction: Ni‐rich nickel‐cobalt‐manganese (NCM)‐type layered oxide materials are promising candidates to satisfy the increasing energy demand of lithium‐ion batteries for automotive applications but have major drawbacks in terms of mechanical stability and cycling stability. Herein, the challenges of combining two mitigation strategies (i. e., Zr4+ doping and W6+ coating), their synergistic effects, and the importance of investigating heat‐treated references are reported.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.202102220</identifier><identifier>PMID: 34784118</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>cathode materials ; Cathodes ; Coatings ; Cobalt compounds ; Cycles ; Dopants ; Doping ; Electrochemical analysis ; Electrode materials ; Lithium ; Lithium-ion batteries ; Manganese ; Ni-rich cathodes ; Nickel ; Rechargeable batteries ; Synergistic effect ; W-coating ; Zirconium ; Zr-doping</subject><ispartof>ChemSusChem, 2022-02, Vol.15 (4), p.e202102220-n/a</ispartof><rights>2021 The Authors. ChemSusChem published by Wiley-VCH GmbH</rights><rights>2021 The Authors. ChemSusChem published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4680-b8ed48505eba9b1b7ad8fa2cc88b7f1139234352cc508633b3704c17deed02303</citedby><cites>FETCH-LOGICAL-c4680-b8ed48505eba9b1b7ad8fa2cc88b7f1139234352cc508633b3704c17deed02303</cites><orcidid>0000-0003-4176-5811 ; 0000-0001-7749-5089 ; 0000-0002-4762-5273 ; 0000-0002-2097-5193 ; 0000-0002-5670-0327 ; 0000-0001-7053-3986</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.202102220$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.202102220$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34784118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Reissig, Friederike</creatorcontrib><creatorcontrib>Lange, Martin Alexander</creatorcontrib><creatorcontrib>Haneke, Lukas</creatorcontrib><creatorcontrib>Placke, Tobias</creatorcontrib><creatorcontrib>Zeier, Wolfgang G.</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Schmuch, Richard</creatorcontrib><creatorcontrib>Gomez‐Martin, Aurora</creatorcontrib><title>Synergistic Effects of Surface Coating and Bulk Doping in Ni‐Rich Lithium Nickel Cobalt Manganese Oxide Cathode Materials for High‐Energy Lithium Ion Batteries</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>Ni‐rich layered oxide cathodes are promising candidates to satisfy the increasing energy demand of lithium‐ion batteries for automotive applications. Thermal and cycling stability issues originating from increasing Ni contents are addressed by mitigation strategies such as elemental bulk substitution (“doping”) and surface coating. Although both approaches separately benefit the cycling stability, there are only few reports investigating the combination of two of such approaches. Herein, the combination of Zr as common dopant in commercial materials with effective Li2WO4 and WO3 coatings was investigated with special focus on the impact of different material processing conditions on structural parameters and electrochemical performance in nickel‐cobalt‐manganese (NCM) || graphite cells. Results indicated that the Zr4+ dopant diffusing to the surface during annealing improved the electrochemical performance compared to samples without additional coatings. This work emphasizes the importance to not only investigate the effect of individual dopants or coatings but also the influences between both. (I can't get no) satisfaction: Ni‐rich nickel‐cobalt‐manganese (NCM)‐type layered oxide materials are promising candidates to satisfy the increasing energy demand of lithium‐ion batteries for automotive applications but have major drawbacks in terms of mechanical stability and cycling stability. Herein, the challenges of combining two mitigation strategies (i. e., Zr4+ doping and W6+ coating), their synergistic effects, and the importance of investigating heat‐treated references are reported.</description><subject>cathode materials</subject><subject>Cathodes</subject><subject>Coatings</subject><subject>Cobalt compounds</subject><subject>Cycles</subject><subject>Dopants</subject><subject>Doping</subject><subject>Electrochemical analysis</subject><subject>Electrode materials</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Manganese</subject><subject>Ni-rich cathodes</subject><subject>Nickel</subject><subject>Rechargeable batteries</subject><subject>Synergistic effect</subject><subject>W-coating</subject><subject>Zirconium</subject><subject>Zr-doping</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNqFkctu1DAUhi0EoqWwZYkssWEzg29JnA0SDQOtNKUSAxI7y3GcxG3GntoOMDsegXfgzXgSHE0Jlw2r48vnzz7-AXiM0RIjRJ6rENSSIIIRIQTdAceY52yR5ezj3XlM8RF4EMIVQjkq8_w-OKKs4Axjfgy-b_ZW-86EaBRcta1WMUDXws3oW6k0rJyMxnZQ2gaejsM1fOV209xY-Nb8-PrtnVE9XJvYm3GbVtS1HtKZWg4RXkjbSauDhpdfTJNUMvYu1QsZtTdyCLB1Hp6Zrk-e1fSK_Ww6dxaeyjiBOjwE99qE60e39QR8eL16X50t1pdvzquX64ViOUeLmuuG8QxlupZljetCNryVRCnO66LFmJaEMpqlhQzxnNKaFogpXDRaN4hQRE_Ai4N3N9Zb3Shto5eD2HmzlX4vnDTi7x1retG5T6KkKQrEkuDZrcC7m1GHKLYmKD0M6RvcGATJSo44Imy66-k_6JUbvU3tCZICKznjlCdqeaCUdyF43c6PwUhM-YspfzHnnw48-bOFGf8VeALKA_DZDHr_H52oNpvqt_wnEYnAjw</recordid><startdate>20220218</startdate><enddate>20220218</enddate><creator>Reissig, Friederike</creator><creator>Lange, Martin Alexander</creator><creator>Haneke, Lukas</creator><creator>Placke, Tobias</creator><creator>Zeier, Wolfgang G.</creator><creator>Winter, Martin</creator><creator>Schmuch, Richard</creator><creator>Gomez‐Martin, Aurora</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4176-5811</orcidid><orcidid>https://orcid.org/0000-0001-7749-5089</orcidid><orcidid>https://orcid.org/0000-0002-4762-5273</orcidid><orcidid>https://orcid.org/0000-0002-2097-5193</orcidid><orcidid>https://orcid.org/0000-0002-5670-0327</orcidid><orcidid>https://orcid.org/0000-0001-7053-3986</orcidid></search><sort><creationdate>20220218</creationdate><title>Synergistic Effects of Surface Coating and Bulk Doping in Ni‐Rich Lithium Nickel Cobalt Manganese Oxide Cathode Materials for High‐Energy Lithium Ion Batteries</title><author>Reissig, Friederike ; Lange, Martin Alexander ; Haneke, Lukas ; Placke, Tobias ; Zeier, Wolfgang G. ; Winter, Martin ; Schmuch, Richard ; Gomez‐Martin, Aurora</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4680-b8ed48505eba9b1b7ad8fa2cc88b7f1139234352cc508633b3704c17deed02303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>cathode materials</topic><topic>Cathodes</topic><topic>Coatings</topic><topic>Cobalt compounds</topic><topic>Cycles</topic><topic>Dopants</topic><topic>Doping</topic><topic>Electrochemical analysis</topic><topic>Electrode materials</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Manganese</topic><topic>Ni-rich cathodes</topic><topic>Nickel</topic><topic>Rechargeable batteries</topic><topic>Synergistic effect</topic><topic>W-coating</topic><topic>Zirconium</topic><topic>Zr-doping</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Reissig, Friederike</creatorcontrib><creatorcontrib>Lange, Martin Alexander</creatorcontrib><creatorcontrib>Haneke, Lukas</creatorcontrib><creatorcontrib>Placke, Tobias</creatorcontrib><creatorcontrib>Zeier, Wolfgang G.</creatorcontrib><creatorcontrib>Winter, Martin</creatorcontrib><creatorcontrib>Schmuch, Richard</creatorcontrib><creatorcontrib>Gomez‐Martin, Aurora</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Reissig, Friederike</au><au>Lange, Martin Alexander</au><au>Haneke, Lukas</au><au>Placke, Tobias</au><au>Zeier, Wolfgang G.</au><au>Winter, Martin</au><au>Schmuch, Richard</au><au>Gomez‐Martin, Aurora</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synergistic Effects of Surface Coating and Bulk Doping in Ni‐Rich Lithium Nickel Cobalt Manganese Oxide Cathode Materials for High‐Energy Lithium Ion Batteries</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2022-02-18</date><risdate>2022</risdate><volume>15</volume><issue>4</issue><spage>e202102220</spage><epage>n/a</epage><pages>e202102220-n/a</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>Ni‐rich layered oxide cathodes are promising candidates to satisfy the increasing energy demand of lithium‐ion batteries for automotive applications. Thermal and cycling stability issues originating from increasing Ni contents are addressed by mitigation strategies such as elemental bulk substitution (“doping”) and surface coating. Although both approaches separately benefit the cycling stability, there are only few reports investigating the combination of two of such approaches. Herein, the combination of Zr as common dopant in commercial materials with effective Li2WO4 and WO3 coatings was investigated with special focus on the impact of different material processing conditions on structural parameters and electrochemical performance in nickel‐cobalt‐manganese (NCM) || graphite cells. Results indicated that the Zr4+ dopant diffusing to the surface during annealing improved the electrochemical performance compared to samples without additional coatings. This work emphasizes the importance to not only investigate the effect of individual dopants or coatings but also the influences between both. (I can't get no) satisfaction: Ni‐rich nickel‐cobalt‐manganese (NCM)‐type layered oxide materials are promising candidates to satisfy the increasing energy demand of lithium‐ion batteries for automotive applications but have major drawbacks in terms of mechanical stability and cycling stability. Herein, the challenges of combining two mitigation strategies (i. e., Zr4+ doping and W6+ coating), their synergistic effects, and the importance of investigating heat‐treated references are reported.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34784118</pmid><doi>10.1002/cssc.202102220</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4176-5811</orcidid><orcidid>https://orcid.org/0000-0001-7749-5089</orcidid><orcidid>https://orcid.org/0000-0002-4762-5273</orcidid><orcidid>https://orcid.org/0000-0002-2097-5193</orcidid><orcidid>https://orcid.org/0000-0002-5670-0327</orcidid><orcidid>https://orcid.org/0000-0001-7053-3986</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2022-02, Vol.15 (4), p.e202102220-n/a
issn 1864-5631
1864-564X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9300204
source Wiley Online Library Journals Frontfile Complete
subjects cathode materials
Cathodes
Coatings
Cobalt compounds
Cycles
Dopants
Doping
Electrochemical analysis
Electrode materials
Lithium
Lithium-ion batteries
Manganese
Ni-rich cathodes
Nickel
Rechargeable batteries
Synergistic effect
W-coating
Zirconium
Zr-doping
title Synergistic Effects of Surface Coating and Bulk Doping in Ni‐Rich Lithium Nickel Cobalt Manganese Oxide Cathode Materials for High‐Energy Lithium Ion Batteries
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T18%3A52%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synergistic%20Effects%20of%20Surface%20Coating%20and%20Bulk%20Doping%20in%20Ni%E2%80%90Rich%20Lithium%20Nickel%20Cobalt%20Manganese%20Oxide%20Cathode%20Materials%20for%20High%E2%80%90Energy%20Lithium%20Ion%20Batteries&rft.jtitle=ChemSusChem&rft.au=Reissig,%20Friederike&rft.date=2022-02-18&rft.volume=15&rft.issue=4&rft.spage=e202102220&rft.epage=n/a&rft.pages=e202102220-n/a&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.202102220&rft_dat=%3Cproquest_pubme%3E2598080240%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2631984838&rft_id=info:pmid/34784118&rfr_iscdi=true