Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution
Ruthenium (Ru)‐based catalysts, with considerable performance and desirable cost, are becoming highly interesting candidates to replace platinum (Pt) in the alkaline hydrogen evolution reaction (HER). The hydrogen binding at Ru sites (Ru−H) is an important factor limiting the HER activity. Herein, d...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2022-01, Vol.61 (4), p.e202113664-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | e202113664 |
container_title | Angewandte Chemie International Edition |
container_volume | 61 |
creator | Cai, Chao Liu, Kang Zhu, Yuanmin Li, Pengcheng Wang, Qiyou Liu, Bao Chen, Shanyong Li, Huangjingwei Zhu, Li Li, Hongmei Fu, Junwei Chen, Yu Pensa, Evangelina Hu, Junhua Lu, Ying‐Rui Chan, Ting‐Shan Cortés, Emiliano Liu, Min |
description | Ruthenium (Ru)‐based catalysts, with considerable performance and desirable cost, are becoming highly interesting candidates to replace platinum (Pt) in the alkaline hydrogen evolution reaction (HER). The hydrogen binding at Ru sites (Ru−H) is an important factor limiting the HER activity. Herein, density functional theory (DFT) simulations show that the essence of Ru−H binding energy is the strong interaction between the 4dz2
orbital of Ru and the 1s orbital of H. The charge transfer between Ru sites and substrates (Co and Ni) causes the appropriate downward shift of the 4dz2
‐band center of Ru, which results in a Gibbs free energy of 0.022 eV for H* in the RuCo system, much lower than the 0.133 eV in the pure Ru system. This theoretical prediction has been experimentally confirmed using RuCo alloy‐nanosheets (RuCo ANSs). They were prepared via a fast co‐precipitation method followed with a mild electrochemical reduction. Structure characterizations reveal that the Ru atoms are embedded into the Co substrate as isolated active sites with a planar symmetric and Z‐direction asymmetric coordination structure, obtaining an optimal 4dz2
modulated electronic structure. Hydrogen sensor and temperature program desorption (TPD) tests demonstrate the enhanced Ru−H interactions in RuCo ANSs compared to those in pure Ru nanoparticles. As a result, the RuCo ANSs reach an ultra‐low overpotential of 10 mV at 10 mA cm−2 and a Tafel slope of 20.6 mV dec−1 in 1 M KOH, outperforming that of the commercial Pt/C. This holistic work provides a new insight to promote alkaline HER by optimizing the metal‐H binding energy of active sites.
Optimizing Ru−H adsorption/desorption efficiency, via adjusting the Ru 4dz2
orbital in RuCo alloy‐nanosheets, enables highly promoted alkaline hydrogen evolution reaction. This optimized adsorption/desorption efficiency is demonstrated by the hydrogen sensor and temperature programmed desorption experiments. The RuCo alloy‐nanosheets possess a record low overpotential of 10 mV at 10 mA cm−2, superior to the commercial Pt/C and Ru/C. |
doi_str_mv | 10.1002/anie.202113664 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9300137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604021223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4684-af623e9be75f89a7c51a879e1da99b84b527e1abbd230c9cb3619f36a35ea0cb3</originalsourceid><addsrcrecordid>eNqFkUtvEzEURi0EoqWwZYkssWEzwY8ZPzZIaRRopaqVeKwtz8ydxMWxgz3TKvx6HKWkwIaVH_f46F5_CL2mZEYJYe9tcDBjhFHKhaifoFPaMFpxKfnTsq85r6Rq6Al6kfNt4ZUi4jk64bViTDJ1ivzNdnQb99OFFb7Y9SmuIOBzF_r9RQz484S_uBEyvnfjupwWEc-9jzt8bUPMa4Ax4yEmvBwG1zkIYyl_t94FeNQt76KfRhfDS_RssD7Dq4f1DH37uPy6uKiubj5dLuZXVVcLVVd2EIyDbkE2g9JWdg21SmqgvdW6VXXbMAnUtm3POOl013JB9cCF5Q1YUo5n6MPBu53aDfRdaStZb7bJbWzamWid-bsS3Nqs4p3RnBDKZRG8exCk-GOCPJqNyx14bwPEKRsmSF3-nDFe0Lf_oLdxSqGMVyiqBRVc74WzA9WlmHOC4dgMJWYfpNkHaY5Blgdv_hzhiP9OrgD6ANw7D7v_6Mz8-nL5KP8FV2OsGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619616397</pqid></control><display><type>article</type><title>Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution</title><source>Wiley-Blackwell Journals</source><creator>Cai, Chao ; Liu, Kang ; Zhu, Yuanmin ; Li, Pengcheng ; Wang, Qiyou ; Liu, Bao ; Chen, Shanyong ; Li, Huangjingwei ; Zhu, Li ; Li, Hongmei ; Fu, Junwei ; Chen, Yu ; Pensa, Evangelina ; Hu, Junhua ; Lu, Ying‐Rui ; Chan, Ting‐Shan ; Cortés, Emiliano ; Liu, Min</creator><creatorcontrib>Cai, Chao ; Liu, Kang ; Zhu, Yuanmin ; Li, Pengcheng ; Wang, Qiyou ; Liu, Bao ; Chen, Shanyong ; Li, Huangjingwei ; Zhu, Li ; Li, Hongmei ; Fu, Junwei ; Chen, Yu ; Pensa, Evangelina ; Hu, Junhua ; Lu, Ying‐Rui ; Chan, Ting‐Shan ; Cortés, Emiliano ; Liu, Min</creatorcontrib><description>Ruthenium (Ru)‐based catalysts, with considerable performance and desirable cost, are becoming highly interesting candidates to replace platinum (Pt) in the alkaline hydrogen evolution reaction (HER). The hydrogen binding at Ru sites (Ru−H) is an important factor limiting the HER activity. Herein, density functional theory (DFT) simulations show that the essence of Ru−H binding energy is the strong interaction between the 4dz2
orbital of Ru and the 1s orbital of H. The charge transfer between Ru sites and substrates (Co and Ni) causes the appropriate downward shift of the 4dz2
‐band center of Ru, which results in a Gibbs free energy of 0.022 eV for H* in the RuCo system, much lower than the 0.133 eV in the pure Ru system. This theoretical prediction has been experimentally confirmed using RuCo alloy‐nanosheets (RuCo ANSs). They were prepared via a fast co‐precipitation method followed with a mild electrochemical reduction. Structure characterizations reveal that the Ru atoms are embedded into the Co substrate as isolated active sites with a planar symmetric and Z‐direction asymmetric coordination structure, obtaining an optimal 4dz2
modulated electronic structure. Hydrogen sensor and temperature program desorption (TPD) tests demonstrate the enhanced Ru−H interactions in RuCo ANSs compared to those in pure Ru nanoparticles. As a result, the RuCo ANSs reach an ultra‐low overpotential of 10 mV at 10 mA cm−2 and a Tafel slope of 20.6 mV dec−1 in 1 M KOH, outperforming that of the commercial Pt/C. This holistic work provides a new insight to promote alkaline HER by optimizing the metal‐H binding energy of active sites.
Optimizing Ru−H adsorption/desorption efficiency, via adjusting the Ru 4dz2
orbital in RuCo alloy‐nanosheets, enables highly promoted alkaline hydrogen evolution reaction. This optimized adsorption/desorption efficiency is demonstrated by the hydrogen sensor and temperature programmed desorption experiments. The RuCo alloy‐nanosheets possess a record low overpotential of 10 mV at 10 mA cm−2, superior to the commercial Pt/C and Ru/C.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202113664</identifier><identifier>PMID: 34822728</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alkaline HER ; Binding energy ; Catalysts ; Charge transfer ; Chemical reduction ; Chemical sensors ; Cobalt nanosheet ; Communication ; Communications ; Density functional theory ; Electrochemistry ; Electronic structure ; Free energy ; Gibbs free energy ; Hydrogen ; Hydrogen adsorption/desorption ; Hydrogen evolution reactions ; Nanoalloys ; Nanoparticles ; Nanosheets ; Optimization ; Orbital modulation ; Platinum ; Ruthenium ; Strong interactions (field theory) ; Substrates ; Thermodynamics</subject><ispartof>Angewandte Chemie International Edition, 2022-01, Vol.61 (4), p.e202113664-n/a</ispartof><rights>2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4684-af623e9be75f89a7c51a879e1da99b84b527e1abbd230c9cb3619f36a35ea0cb3</citedby><cites>FETCH-LOGICAL-c4684-af623e9be75f89a7c51a879e1da99b84b527e1abbd230c9cb3619f36a35ea0cb3</cites><orcidid>0000-0001-8248-4165 ; 0000-0002-9007-4817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202113664$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202113664$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34822728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Chao</creatorcontrib><creatorcontrib>Liu, Kang</creatorcontrib><creatorcontrib>Zhu, Yuanmin</creatorcontrib><creatorcontrib>Li, Pengcheng</creatorcontrib><creatorcontrib>Wang, Qiyou</creatorcontrib><creatorcontrib>Liu, Bao</creatorcontrib><creatorcontrib>Chen, Shanyong</creatorcontrib><creatorcontrib>Li, Huangjingwei</creatorcontrib><creatorcontrib>Zhu, Li</creatorcontrib><creatorcontrib>Li, Hongmei</creatorcontrib><creatorcontrib>Fu, Junwei</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Pensa, Evangelina</creatorcontrib><creatorcontrib>Hu, Junhua</creatorcontrib><creatorcontrib>Lu, Ying‐Rui</creatorcontrib><creatorcontrib>Chan, Ting‐Shan</creatorcontrib><creatorcontrib>Cortés, Emiliano</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><title>Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Ruthenium (Ru)‐based catalysts, with considerable performance and desirable cost, are becoming highly interesting candidates to replace platinum (Pt) in the alkaline hydrogen evolution reaction (HER). The hydrogen binding at Ru sites (Ru−H) is an important factor limiting the HER activity. Herein, density functional theory (DFT) simulations show that the essence of Ru−H binding energy is the strong interaction between the 4dz2
orbital of Ru and the 1s orbital of H. The charge transfer between Ru sites and substrates (Co and Ni) causes the appropriate downward shift of the 4dz2
‐band center of Ru, which results in a Gibbs free energy of 0.022 eV for H* in the RuCo system, much lower than the 0.133 eV in the pure Ru system. This theoretical prediction has been experimentally confirmed using RuCo alloy‐nanosheets (RuCo ANSs). They were prepared via a fast co‐precipitation method followed with a mild electrochemical reduction. Structure characterizations reveal that the Ru atoms are embedded into the Co substrate as isolated active sites with a planar symmetric and Z‐direction asymmetric coordination structure, obtaining an optimal 4dz2
modulated electronic structure. Hydrogen sensor and temperature program desorption (TPD) tests demonstrate the enhanced Ru−H interactions in RuCo ANSs compared to those in pure Ru nanoparticles. As a result, the RuCo ANSs reach an ultra‐low overpotential of 10 mV at 10 mA cm−2 and a Tafel slope of 20.6 mV dec−1 in 1 M KOH, outperforming that of the commercial Pt/C. This holistic work provides a new insight to promote alkaline HER by optimizing the metal‐H binding energy of active sites.
Optimizing Ru−H adsorption/desorption efficiency, via adjusting the Ru 4dz2
orbital in RuCo alloy‐nanosheets, enables highly promoted alkaline hydrogen evolution reaction. This optimized adsorption/desorption efficiency is demonstrated by the hydrogen sensor and temperature programmed desorption experiments. The RuCo alloy‐nanosheets possess a record low overpotential of 10 mV at 10 mA cm−2, superior to the commercial Pt/C and Ru/C.</description><subject>Alkaline HER</subject><subject>Binding energy</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemical reduction</subject><subject>Chemical sensors</subject><subject>Cobalt nanosheet</subject><subject>Communication</subject><subject>Communications</subject><subject>Density functional theory</subject><subject>Electrochemistry</subject><subject>Electronic structure</subject><subject>Free energy</subject><subject>Gibbs free energy</subject><subject>Hydrogen</subject><subject>Hydrogen adsorption/desorption</subject><subject>Hydrogen evolution reactions</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Nanosheets</subject><subject>Optimization</subject><subject>Orbital modulation</subject><subject>Platinum</subject><subject>Ruthenium</subject><subject>Strong interactions (field theory)</subject><subject>Substrates</subject><subject>Thermodynamics</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkUtvEzEURi0EoqWwZYkssWEzwY8ZPzZIaRRopaqVeKwtz8ydxMWxgz3TKvx6HKWkwIaVH_f46F5_CL2mZEYJYe9tcDBjhFHKhaifoFPaMFpxKfnTsq85r6Rq6Al6kfNt4ZUi4jk64bViTDJ1ivzNdnQb99OFFb7Y9SmuIOBzF_r9RQz484S_uBEyvnfjupwWEc-9jzt8bUPMa4Ax4yEmvBwG1zkIYyl_t94FeNQt76KfRhfDS_RssD7Dq4f1DH37uPy6uKiubj5dLuZXVVcLVVd2EIyDbkE2g9JWdg21SmqgvdW6VXXbMAnUtm3POOl013JB9cCF5Q1YUo5n6MPBu53aDfRdaStZb7bJbWzamWid-bsS3Nqs4p3RnBDKZRG8exCk-GOCPJqNyx14bwPEKRsmSF3-nDFe0Lf_oLdxSqGMVyiqBRVc74WzA9WlmHOC4dgMJWYfpNkHaY5Blgdv_hzhiP9OrgD6ANw7D7v_6Mz8-nL5KP8FV2OsGQ</recordid><startdate>20220121</startdate><enddate>20220121</enddate><creator>Cai, Chao</creator><creator>Liu, Kang</creator><creator>Zhu, Yuanmin</creator><creator>Li, Pengcheng</creator><creator>Wang, Qiyou</creator><creator>Liu, Bao</creator><creator>Chen, Shanyong</creator><creator>Li, Huangjingwei</creator><creator>Zhu, Li</creator><creator>Li, Hongmei</creator><creator>Fu, Junwei</creator><creator>Chen, Yu</creator><creator>Pensa, Evangelina</creator><creator>Hu, Junhua</creator><creator>Lu, Ying‐Rui</creator><creator>Chan, Ting‐Shan</creator><creator>Cortés, Emiliano</creator><creator>Liu, Min</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8248-4165</orcidid><orcidid>https://orcid.org/0000-0002-9007-4817</orcidid></search><sort><creationdate>20220121</creationdate><title>Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution</title><author>Cai, Chao ; Liu, Kang ; Zhu, Yuanmin ; Li, Pengcheng ; Wang, Qiyou ; Liu, Bao ; Chen, Shanyong ; Li, Huangjingwei ; Zhu, Li ; Li, Hongmei ; Fu, Junwei ; Chen, Yu ; Pensa, Evangelina ; Hu, Junhua ; Lu, Ying‐Rui ; Chan, Ting‐Shan ; Cortés, Emiliano ; Liu, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4684-af623e9be75f89a7c51a879e1da99b84b527e1abbd230c9cb3619f36a35ea0cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alkaline HER</topic><topic>Binding energy</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemical reduction</topic><topic>Chemical sensors</topic><topic>Cobalt nanosheet</topic><topic>Communication</topic><topic>Communications</topic><topic>Density functional theory</topic><topic>Electrochemistry</topic><topic>Electronic structure</topic><topic>Free energy</topic><topic>Gibbs free energy</topic><topic>Hydrogen</topic><topic>Hydrogen adsorption/desorption</topic><topic>Hydrogen evolution reactions</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Nanosheets</topic><topic>Optimization</topic><topic>Orbital modulation</topic><topic>Platinum</topic><topic>Ruthenium</topic><topic>Strong interactions (field theory)</topic><topic>Substrates</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Chao</creatorcontrib><creatorcontrib>Liu, Kang</creatorcontrib><creatorcontrib>Zhu, Yuanmin</creatorcontrib><creatorcontrib>Li, Pengcheng</creatorcontrib><creatorcontrib>Wang, Qiyou</creatorcontrib><creatorcontrib>Liu, Bao</creatorcontrib><creatorcontrib>Chen, Shanyong</creatorcontrib><creatorcontrib>Li, Huangjingwei</creatorcontrib><creatorcontrib>Zhu, Li</creatorcontrib><creatorcontrib>Li, Hongmei</creatorcontrib><creatorcontrib>Fu, Junwei</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Pensa, Evangelina</creatorcontrib><creatorcontrib>Hu, Junhua</creatorcontrib><creatorcontrib>Lu, Ying‐Rui</creatorcontrib><creatorcontrib>Chan, Ting‐Shan</creatorcontrib><creatorcontrib>Cortés, Emiliano</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Chao</au><au>Liu, Kang</au><au>Zhu, Yuanmin</au><au>Li, Pengcheng</au><au>Wang, Qiyou</au><au>Liu, Bao</au><au>Chen, Shanyong</au><au>Li, Huangjingwei</au><au>Zhu, Li</au><au>Li, Hongmei</au><au>Fu, Junwei</au><au>Chen, Yu</au><au>Pensa, Evangelina</au><au>Hu, Junhua</au><au>Lu, Ying‐Rui</au><au>Chan, Ting‐Shan</au><au>Cortés, Emiliano</au><au>Liu, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-01-21</date><risdate>2022</risdate><volume>61</volume><issue>4</issue><spage>e202113664</spage><epage>n/a</epage><pages>e202113664-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Ruthenium (Ru)‐based catalysts, with considerable performance and desirable cost, are becoming highly interesting candidates to replace platinum (Pt) in the alkaline hydrogen evolution reaction (HER). The hydrogen binding at Ru sites (Ru−H) is an important factor limiting the HER activity. Herein, density functional theory (DFT) simulations show that the essence of Ru−H binding energy is the strong interaction between the 4dz2
orbital of Ru and the 1s orbital of H. The charge transfer between Ru sites and substrates (Co and Ni) causes the appropriate downward shift of the 4dz2
‐band center of Ru, which results in a Gibbs free energy of 0.022 eV for H* in the RuCo system, much lower than the 0.133 eV in the pure Ru system. This theoretical prediction has been experimentally confirmed using RuCo alloy‐nanosheets (RuCo ANSs). They were prepared via a fast co‐precipitation method followed with a mild electrochemical reduction. Structure characterizations reveal that the Ru atoms are embedded into the Co substrate as isolated active sites with a planar symmetric and Z‐direction asymmetric coordination structure, obtaining an optimal 4dz2
modulated electronic structure. Hydrogen sensor and temperature program desorption (TPD) tests demonstrate the enhanced Ru−H interactions in RuCo ANSs compared to those in pure Ru nanoparticles. As a result, the RuCo ANSs reach an ultra‐low overpotential of 10 mV at 10 mA cm−2 and a Tafel slope of 20.6 mV dec−1 in 1 M KOH, outperforming that of the commercial Pt/C. This holistic work provides a new insight to promote alkaline HER by optimizing the metal‐H binding energy of active sites.
Optimizing Ru−H adsorption/desorption efficiency, via adjusting the Ru 4dz2
orbital in RuCo alloy‐nanosheets, enables highly promoted alkaline hydrogen evolution reaction. This optimized adsorption/desorption efficiency is demonstrated by the hydrogen sensor and temperature programmed desorption experiments. The RuCo alloy‐nanosheets possess a record low overpotential of 10 mV at 10 mA cm−2, superior to the commercial Pt/C and Ru/C.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34822728</pmid><doi>10.1002/anie.202113664</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-8248-4165</orcidid><orcidid>https://orcid.org/0000-0002-9007-4817</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2022-01, Vol.61 (4), p.e202113664-n/a |
issn | 1433-7851 1521-3773 1521-3773 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9300137 |
source | Wiley-Blackwell Journals |
subjects | Alkaline HER Binding energy Catalysts Charge transfer Chemical reduction Chemical sensors Cobalt nanosheet Communication Communications Density functional theory Electrochemistry Electronic structure Free energy Gibbs free energy Hydrogen Hydrogen adsorption/desorption Hydrogen evolution reactions Nanoalloys Nanoparticles Nanosheets Optimization Orbital modulation Platinum Ruthenium Strong interactions (field theory) Substrates Thermodynamics |
title | Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Hydrogen%20Binding%20on%20Ru%20Sites%20with%20RuCo%20Alloy%20Nanosheets%20for%20Efficient%20Alkaline%20Hydrogen%20Evolution&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Cai,%20Chao&rft.date=2022-01-21&rft.volume=61&rft.issue=4&rft.spage=e202113664&rft.epage=n/a&rft.pages=e202113664-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202113664&rft_dat=%3Cproquest_pubme%3E2604021223%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619616397&rft_id=info:pmid/34822728&rfr_iscdi=true |