Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution

Ruthenium (Ru)‐based catalysts, with considerable performance and desirable cost, are becoming highly interesting candidates to replace platinum (Pt) in the alkaline hydrogen evolution reaction (HER). The hydrogen binding at Ru sites (Ru−H) is an important factor limiting the HER activity. Herein, d...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2022-01, Vol.61 (4), p.e202113664-n/a
Hauptverfasser: Cai, Chao, Liu, Kang, Zhu, Yuanmin, Li, Pengcheng, Wang, Qiyou, Liu, Bao, Chen, Shanyong, Li, Huangjingwei, Zhu, Li, Li, Hongmei, Fu, Junwei, Chen, Yu, Pensa, Evangelina, Hu, Junhua, Lu, Ying‐Rui, Chan, Ting‐Shan, Cortés, Emiliano, Liu, Min
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 4
container_start_page e202113664
container_title Angewandte Chemie International Edition
container_volume 61
creator Cai, Chao
Liu, Kang
Zhu, Yuanmin
Li, Pengcheng
Wang, Qiyou
Liu, Bao
Chen, Shanyong
Li, Huangjingwei
Zhu, Li
Li, Hongmei
Fu, Junwei
Chen, Yu
Pensa, Evangelina
Hu, Junhua
Lu, Ying‐Rui
Chan, Ting‐Shan
Cortés, Emiliano
Liu, Min
description Ruthenium (Ru)‐based catalysts, with considerable performance and desirable cost, are becoming highly interesting candidates to replace platinum (Pt) in the alkaline hydrogen evolution reaction (HER). The hydrogen binding at Ru sites (Ru−H) is an important factor limiting the HER activity. Herein, density functional theory (DFT) simulations show that the essence of Ru−H binding energy is the strong interaction between the 4dz2 orbital of Ru and the 1s orbital of H. The charge transfer between Ru sites and substrates (Co and Ni) causes the appropriate downward shift of the 4dz2 ‐band center of Ru, which results in a Gibbs free energy of 0.022 eV for H* in the RuCo system, much lower than the 0.133 eV in the pure Ru system. This theoretical prediction has been experimentally confirmed using RuCo alloy‐nanosheets (RuCo ANSs). They were prepared via a fast co‐precipitation method followed with a mild electrochemical reduction. Structure characterizations reveal that the Ru atoms are embedded into the Co substrate as isolated active sites with a planar symmetric and Z‐direction asymmetric coordination structure, obtaining an optimal 4dz2 modulated electronic structure. Hydrogen sensor and temperature program desorption (TPD) tests demonstrate the enhanced Ru−H interactions in RuCo ANSs compared to those in pure Ru nanoparticles. As a result, the RuCo ANSs reach an ultra‐low overpotential of 10 mV at 10 mA cm−2 and a Tafel slope of 20.6 mV dec−1 in 1 M KOH, outperforming that of the commercial Pt/C. This holistic work provides a new insight to promote alkaline HER by optimizing the metal‐H binding energy of active sites. Optimizing Ru−H adsorption/desorption efficiency, via adjusting the Ru 4dz2 orbital in RuCo alloy‐nanosheets, enables highly promoted alkaline hydrogen evolution reaction. This optimized adsorption/desorption efficiency is demonstrated by the hydrogen sensor and temperature programmed desorption experiments. The RuCo alloy‐nanosheets possess a record low overpotential of 10 mV at 10 mA cm−2, superior to the commercial Pt/C and Ru/C.
doi_str_mv 10.1002/anie.202113664
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9300137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2604021223</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4684-af623e9be75f89a7c51a879e1da99b84b527e1abbd230c9cb3619f36a35ea0cb3</originalsourceid><addsrcrecordid>eNqFkUtvEzEURi0EoqWwZYkssWEzwY8ZPzZIaRRopaqVeKwtz8ydxMWxgz3TKvx6HKWkwIaVH_f46F5_CL2mZEYJYe9tcDBjhFHKhaifoFPaMFpxKfnTsq85r6Rq6Al6kfNt4ZUi4jk64bViTDJ1ivzNdnQb99OFFb7Y9SmuIOBzF_r9RQz484S_uBEyvnfjupwWEc-9jzt8bUPMa4Ax4yEmvBwG1zkIYyl_t94FeNQt76KfRhfDS_RssD7Dq4f1DH37uPy6uKiubj5dLuZXVVcLVVd2EIyDbkE2g9JWdg21SmqgvdW6VXXbMAnUtm3POOl013JB9cCF5Q1YUo5n6MPBu53aDfRdaStZb7bJbWzamWid-bsS3Nqs4p3RnBDKZRG8exCk-GOCPJqNyx14bwPEKRsmSF3-nDFe0Lf_oLdxSqGMVyiqBRVc74WzA9WlmHOC4dgMJWYfpNkHaY5Blgdv_hzhiP9OrgD6ANw7D7v_6Mz8-nL5KP8FV2OsGQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2619616397</pqid></control><display><type>article</type><title>Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution</title><source>Wiley-Blackwell Journals</source><creator>Cai, Chao ; Liu, Kang ; Zhu, Yuanmin ; Li, Pengcheng ; Wang, Qiyou ; Liu, Bao ; Chen, Shanyong ; Li, Huangjingwei ; Zhu, Li ; Li, Hongmei ; Fu, Junwei ; Chen, Yu ; Pensa, Evangelina ; Hu, Junhua ; Lu, Ying‐Rui ; Chan, Ting‐Shan ; Cortés, Emiliano ; Liu, Min</creator><creatorcontrib>Cai, Chao ; Liu, Kang ; Zhu, Yuanmin ; Li, Pengcheng ; Wang, Qiyou ; Liu, Bao ; Chen, Shanyong ; Li, Huangjingwei ; Zhu, Li ; Li, Hongmei ; Fu, Junwei ; Chen, Yu ; Pensa, Evangelina ; Hu, Junhua ; Lu, Ying‐Rui ; Chan, Ting‐Shan ; Cortés, Emiliano ; Liu, Min</creatorcontrib><description>Ruthenium (Ru)‐based catalysts, with considerable performance and desirable cost, are becoming highly interesting candidates to replace platinum (Pt) in the alkaline hydrogen evolution reaction (HER). The hydrogen binding at Ru sites (Ru−H) is an important factor limiting the HER activity. Herein, density functional theory (DFT) simulations show that the essence of Ru−H binding energy is the strong interaction between the 4dz2 orbital of Ru and the 1s orbital of H. The charge transfer between Ru sites and substrates (Co and Ni) causes the appropriate downward shift of the 4dz2 ‐band center of Ru, which results in a Gibbs free energy of 0.022 eV for H* in the RuCo system, much lower than the 0.133 eV in the pure Ru system. This theoretical prediction has been experimentally confirmed using RuCo alloy‐nanosheets (RuCo ANSs). They were prepared via a fast co‐precipitation method followed with a mild electrochemical reduction. Structure characterizations reveal that the Ru atoms are embedded into the Co substrate as isolated active sites with a planar symmetric and Z‐direction asymmetric coordination structure, obtaining an optimal 4dz2 modulated electronic structure. Hydrogen sensor and temperature program desorption (TPD) tests demonstrate the enhanced Ru−H interactions in RuCo ANSs compared to those in pure Ru nanoparticles. As a result, the RuCo ANSs reach an ultra‐low overpotential of 10 mV at 10 mA cm−2 and a Tafel slope of 20.6 mV dec−1 in 1 M KOH, outperforming that of the commercial Pt/C. This holistic work provides a new insight to promote alkaline HER by optimizing the metal‐H binding energy of active sites. Optimizing Ru−H adsorption/desorption efficiency, via adjusting the Ru 4dz2 orbital in RuCo alloy‐nanosheets, enables highly promoted alkaline hydrogen evolution reaction. This optimized adsorption/desorption efficiency is demonstrated by the hydrogen sensor and temperature programmed desorption experiments. The RuCo alloy‐nanosheets possess a record low overpotential of 10 mV at 10 mA cm−2, superior to the commercial Pt/C and Ru/C.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>ISSN: 1521-3773</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.202113664</identifier><identifier>PMID: 34822728</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alkaline HER ; Binding energy ; Catalysts ; Charge transfer ; Chemical reduction ; Chemical sensors ; Cobalt nanosheet ; Communication ; Communications ; Density functional theory ; Electrochemistry ; Electronic structure ; Free energy ; Gibbs free energy ; Hydrogen ; Hydrogen adsorption/desorption ; Hydrogen evolution reactions ; Nanoalloys ; Nanoparticles ; Nanosheets ; Optimization ; Orbital modulation ; Platinum ; Ruthenium ; Strong interactions (field theory) ; Substrates ; Thermodynamics</subject><ispartof>Angewandte Chemie International Edition, 2022-01, Vol.61 (4), p.e202113664-n/a</ispartof><rights>2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH</rights><rights>2021 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4684-af623e9be75f89a7c51a879e1da99b84b527e1abbd230c9cb3619f36a35ea0cb3</citedby><cites>FETCH-LOGICAL-c4684-af623e9be75f89a7c51a879e1da99b84b527e1abbd230c9cb3619f36a35ea0cb3</cites><orcidid>0000-0001-8248-4165 ; 0000-0002-9007-4817</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.202113664$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.202113664$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34822728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cai, Chao</creatorcontrib><creatorcontrib>Liu, Kang</creatorcontrib><creatorcontrib>Zhu, Yuanmin</creatorcontrib><creatorcontrib>Li, Pengcheng</creatorcontrib><creatorcontrib>Wang, Qiyou</creatorcontrib><creatorcontrib>Liu, Bao</creatorcontrib><creatorcontrib>Chen, Shanyong</creatorcontrib><creatorcontrib>Li, Huangjingwei</creatorcontrib><creatorcontrib>Zhu, Li</creatorcontrib><creatorcontrib>Li, Hongmei</creatorcontrib><creatorcontrib>Fu, Junwei</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Pensa, Evangelina</creatorcontrib><creatorcontrib>Hu, Junhua</creatorcontrib><creatorcontrib>Lu, Ying‐Rui</creatorcontrib><creatorcontrib>Chan, Ting‐Shan</creatorcontrib><creatorcontrib>Cortés, Emiliano</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><title>Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Ruthenium (Ru)‐based catalysts, with considerable performance and desirable cost, are becoming highly interesting candidates to replace platinum (Pt) in the alkaline hydrogen evolution reaction (HER). The hydrogen binding at Ru sites (Ru−H) is an important factor limiting the HER activity. Herein, density functional theory (DFT) simulations show that the essence of Ru−H binding energy is the strong interaction between the 4dz2 orbital of Ru and the 1s orbital of H. The charge transfer between Ru sites and substrates (Co and Ni) causes the appropriate downward shift of the 4dz2 ‐band center of Ru, which results in a Gibbs free energy of 0.022 eV for H* in the RuCo system, much lower than the 0.133 eV in the pure Ru system. This theoretical prediction has been experimentally confirmed using RuCo alloy‐nanosheets (RuCo ANSs). They were prepared via a fast co‐precipitation method followed with a mild electrochemical reduction. Structure characterizations reveal that the Ru atoms are embedded into the Co substrate as isolated active sites with a planar symmetric and Z‐direction asymmetric coordination structure, obtaining an optimal 4dz2 modulated electronic structure. Hydrogen sensor and temperature program desorption (TPD) tests demonstrate the enhanced Ru−H interactions in RuCo ANSs compared to those in pure Ru nanoparticles. As a result, the RuCo ANSs reach an ultra‐low overpotential of 10 mV at 10 mA cm−2 and a Tafel slope of 20.6 mV dec−1 in 1 M KOH, outperforming that of the commercial Pt/C. This holistic work provides a new insight to promote alkaline HER by optimizing the metal‐H binding energy of active sites. Optimizing Ru−H adsorption/desorption efficiency, via adjusting the Ru 4dz2 orbital in RuCo alloy‐nanosheets, enables highly promoted alkaline hydrogen evolution reaction. This optimized adsorption/desorption efficiency is demonstrated by the hydrogen sensor and temperature programmed desorption experiments. The RuCo alloy‐nanosheets possess a record low overpotential of 10 mV at 10 mA cm−2, superior to the commercial Pt/C and Ru/C.</description><subject>Alkaline HER</subject><subject>Binding energy</subject><subject>Catalysts</subject><subject>Charge transfer</subject><subject>Chemical reduction</subject><subject>Chemical sensors</subject><subject>Cobalt nanosheet</subject><subject>Communication</subject><subject>Communications</subject><subject>Density functional theory</subject><subject>Electrochemistry</subject><subject>Electronic structure</subject><subject>Free energy</subject><subject>Gibbs free energy</subject><subject>Hydrogen</subject><subject>Hydrogen adsorption/desorption</subject><subject>Hydrogen evolution reactions</subject><subject>Nanoalloys</subject><subject>Nanoparticles</subject><subject>Nanosheets</subject><subject>Optimization</subject><subject>Orbital modulation</subject><subject>Platinum</subject><subject>Ruthenium</subject><subject>Strong interactions (field theory)</subject><subject>Substrates</subject><subject>Thermodynamics</subject><issn>1433-7851</issn><issn>1521-3773</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkUtvEzEURi0EoqWwZYkssWEzwY8ZPzZIaRRopaqVeKwtz8ydxMWxgz3TKvx6HKWkwIaVH_f46F5_CL2mZEYJYe9tcDBjhFHKhaifoFPaMFpxKfnTsq85r6Rq6Al6kfNt4ZUi4jk64bViTDJ1ivzNdnQb99OFFb7Y9SmuIOBzF_r9RQz484S_uBEyvnfjupwWEc-9jzt8bUPMa4Ax4yEmvBwG1zkIYyl_t94FeNQt76KfRhfDS_RssD7Dq4f1DH37uPy6uKiubj5dLuZXVVcLVVd2EIyDbkE2g9JWdg21SmqgvdW6VXXbMAnUtm3POOl013JB9cCF5Q1YUo5n6MPBu53aDfRdaStZb7bJbWzamWid-bsS3Nqs4p3RnBDKZRG8exCk-GOCPJqNyx14bwPEKRsmSF3-nDFe0Lf_oLdxSqGMVyiqBRVc74WzA9WlmHOC4dgMJWYfpNkHaY5Blgdv_hzhiP9OrgD6ANw7D7v_6Mz8-nL5KP8FV2OsGQ</recordid><startdate>20220121</startdate><enddate>20220121</enddate><creator>Cai, Chao</creator><creator>Liu, Kang</creator><creator>Zhu, Yuanmin</creator><creator>Li, Pengcheng</creator><creator>Wang, Qiyou</creator><creator>Liu, Bao</creator><creator>Chen, Shanyong</creator><creator>Li, Huangjingwei</creator><creator>Zhu, Li</creator><creator>Li, Hongmei</creator><creator>Fu, Junwei</creator><creator>Chen, Yu</creator><creator>Pensa, Evangelina</creator><creator>Hu, Junhua</creator><creator>Lu, Ying‐Rui</creator><creator>Chan, Ting‐Shan</creator><creator>Cortés, Emiliano</creator><creator>Liu, Min</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8248-4165</orcidid><orcidid>https://orcid.org/0000-0002-9007-4817</orcidid></search><sort><creationdate>20220121</creationdate><title>Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution</title><author>Cai, Chao ; Liu, Kang ; Zhu, Yuanmin ; Li, Pengcheng ; Wang, Qiyou ; Liu, Bao ; Chen, Shanyong ; Li, Huangjingwei ; Zhu, Li ; Li, Hongmei ; Fu, Junwei ; Chen, Yu ; Pensa, Evangelina ; Hu, Junhua ; Lu, Ying‐Rui ; Chan, Ting‐Shan ; Cortés, Emiliano ; Liu, Min</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4684-af623e9be75f89a7c51a879e1da99b84b527e1abbd230c9cb3619f36a35ea0cb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Alkaline HER</topic><topic>Binding energy</topic><topic>Catalysts</topic><topic>Charge transfer</topic><topic>Chemical reduction</topic><topic>Chemical sensors</topic><topic>Cobalt nanosheet</topic><topic>Communication</topic><topic>Communications</topic><topic>Density functional theory</topic><topic>Electrochemistry</topic><topic>Electronic structure</topic><topic>Free energy</topic><topic>Gibbs free energy</topic><topic>Hydrogen</topic><topic>Hydrogen adsorption/desorption</topic><topic>Hydrogen evolution reactions</topic><topic>Nanoalloys</topic><topic>Nanoparticles</topic><topic>Nanosheets</topic><topic>Optimization</topic><topic>Orbital modulation</topic><topic>Platinum</topic><topic>Ruthenium</topic><topic>Strong interactions (field theory)</topic><topic>Substrates</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cai, Chao</creatorcontrib><creatorcontrib>Liu, Kang</creatorcontrib><creatorcontrib>Zhu, Yuanmin</creatorcontrib><creatorcontrib>Li, Pengcheng</creatorcontrib><creatorcontrib>Wang, Qiyou</creatorcontrib><creatorcontrib>Liu, Bao</creatorcontrib><creatorcontrib>Chen, Shanyong</creatorcontrib><creatorcontrib>Li, Huangjingwei</creatorcontrib><creatorcontrib>Zhu, Li</creatorcontrib><creatorcontrib>Li, Hongmei</creatorcontrib><creatorcontrib>Fu, Junwei</creatorcontrib><creatorcontrib>Chen, Yu</creatorcontrib><creatorcontrib>Pensa, Evangelina</creatorcontrib><creatorcontrib>Hu, Junhua</creatorcontrib><creatorcontrib>Lu, Ying‐Rui</creatorcontrib><creatorcontrib>Chan, Ting‐Shan</creatorcontrib><creatorcontrib>Cortés, Emiliano</creatorcontrib><creatorcontrib>Liu, Min</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cai, Chao</au><au>Liu, Kang</au><au>Zhu, Yuanmin</au><au>Li, Pengcheng</au><au>Wang, Qiyou</au><au>Liu, Bao</au><au>Chen, Shanyong</au><au>Li, Huangjingwei</au><au>Zhu, Li</au><au>Li, Hongmei</au><au>Fu, Junwei</au><au>Chen, Yu</au><au>Pensa, Evangelina</au><au>Hu, Junhua</au><au>Lu, Ying‐Rui</au><au>Chan, Ting‐Shan</au><au>Cortés, Emiliano</au><au>Liu, Min</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2022-01-21</date><risdate>2022</risdate><volume>61</volume><issue>4</issue><spage>e202113664</spage><epage>n/a</epage><pages>e202113664-n/a</pages><issn>1433-7851</issn><issn>1521-3773</issn><eissn>1521-3773</eissn><abstract>Ruthenium (Ru)‐based catalysts, with considerable performance and desirable cost, are becoming highly interesting candidates to replace platinum (Pt) in the alkaline hydrogen evolution reaction (HER). The hydrogen binding at Ru sites (Ru−H) is an important factor limiting the HER activity. Herein, density functional theory (DFT) simulations show that the essence of Ru−H binding energy is the strong interaction between the 4dz2 orbital of Ru and the 1s orbital of H. The charge transfer between Ru sites and substrates (Co and Ni) causes the appropriate downward shift of the 4dz2 ‐band center of Ru, which results in a Gibbs free energy of 0.022 eV for H* in the RuCo system, much lower than the 0.133 eV in the pure Ru system. This theoretical prediction has been experimentally confirmed using RuCo alloy‐nanosheets (RuCo ANSs). They were prepared via a fast co‐precipitation method followed with a mild electrochemical reduction. Structure characterizations reveal that the Ru atoms are embedded into the Co substrate as isolated active sites with a planar symmetric and Z‐direction asymmetric coordination structure, obtaining an optimal 4dz2 modulated electronic structure. Hydrogen sensor and temperature program desorption (TPD) tests demonstrate the enhanced Ru−H interactions in RuCo ANSs compared to those in pure Ru nanoparticles. As a result, the RuCo ANSs reach an ultra‐low overpotential of 10 mV at 10 mA cm−2 and a Tafel slope of 20.6 mV dec−1 in 1 M KOH, outperforming that of the commercial Pt/C. This holistic work provides a new insight to promote alkaline HER by optimizing the metal‐H binding energy of active sites. Optimizing Ru−H adsorption/desorption efficiency, via adjusting the Ru 4dz2 orbital in RuCo alloy‐nanosheets, enables highly promoted alkaline hydrogen evolution reaction. This optimized adsorption/desorption efficiency is demonstrated by the hydrogen sensor and temperature programmed desorption experiments. The RuCo alloy‐nanosheets possess a record low overpotential of 10 mV at 10 mA cm−2, superior to the commercial Pt/C and Ru/C.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34822728</pmid><doi>10.1002/anie.202113664</doi><tpages>6</tpages><edition>International ed. in English</edition><orcidid>https://orcid.org/0000-0001-8248-4165</orcidid><orcidid>https://orcid.org/0000-0002-9007-4817</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2022-01, Vol.61 (4), p.e202113664-n/a
issn 1433-7851
1521-3773
1521-3773
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9300137
source Wiley-Blackwell Journals
subjects Alkaline HER
Binding energy
Catalysts
Charge transfer
Chemical reduction
Chemical sensors
Cobalt nanosheet
Communication
Communications
Density functional theory
Electrochemistry
Electronic structure
Free energy
Gibbs free energy
Hydrogen
Hydrogen adsorption/desorption
Hydrogen evolution reactions
Nanoalloys
Nanoparticles
Nanosheets
Optimization
Orbital modulation
Platinum
Ruthenium
Strong interactions (field theory)
Substrates
Thermodynamics
title Optimizing Hydrogen Binding on Ru Sites with RuCo Alloy Nanosheets for Efficient Alkaline Hydrogen Evolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T20%3A49%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimizing%20Hydrogen%20Binding%20on%20Ru%20Sites%20with%20RuCo%20Alloy%20Nanosheets%20for%20Efficient%20Alkaline%20Hydrogen%20Evolution&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Cai,%20Chao&rft.date=2022-01-21&rft.volume=61&rft.issue=4&rft.spage=e202113664&rft.epage=n/a&rft.pages=e202113664-n/a&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.202113664&rft_dat=%3Cproquest_pubme%3E2604021223%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2619616397&rft_id=info:pmid/34822728&rfr_iscdi=true