Coupling of photoactive transition metal complexes to a functional polymer matrix
Conductive polymers represent a promising alternative to semiconducting oxide electrodes typically used in dye‐sensitized cathodes as they more easily allow a tuning of the physicochemical properties. This can then also be very beneficial for using them in light‐driven catalysis. In this computation...
Gespeichert in:
Veröffentlicht in: | Chemistry : a European journal 2021-12, Vol.27 (68), p.17104-17114 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17114 |
---|---|
container_issue | 68 |
container_start_page | 17104 |
container_title | Chemistry : a European journal |
container_volume | 27 |
creator | Putra, Miftahussurur Hamidi Seidenath, Sebastian Kupfer, Stephan Gräfe, Stefanie Groß, Axel |
description | Conductive polymers represent a promising alternative to semiconducting oxide electrodes typically used in dye‐sensitized cathodes as they more easily allow a tuning of the physicochemical properties. This can then also be very beneficial for using them in light‐driven catalysis. In this computational study, we address the coupling of Ru‐based photosensitizers to a polymer matrix by combining two different first‐principles electronic structure approaches. We use a periodic density functional theory code to properly account for the delocalized nature of the electronic states in the polymer. These ground state investigations are complemented by time‐dependent density functional theory simulations to assess the Franck‐Condon photophysics of the present photoactive hybrid material based on a molecular model system. Our results are consistent with recent experimental observations and allow to elucidate the light‐driven redox chemical processes – eventually leading to charge separation – in the present functional hybrid systems with potential application as photocathode materials.
The integration of molecular light‐driven catalyst into a polymer matrix allows to tailor photochemical devices as the embedding can give control over charge transfer processes, photochemical reactivity and degradation resistance. Combining periodic and local quantum chemical approaches, we elucidate the electronic coupling between a polymer and a photosensitive complex, which is a prerequisite for a rational tailoring of such systems. Thus, we identify possible routes towards photoinduced excitations that could trigger catalytic reactions at metal centers attached to the photosensitizer. |
doi_str_mv | 10.1002/chem.202102776 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9299502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2626287029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4456-6258d4479829aeaaf7dba29e10c8abe3ddba3a5fc5fec15720e1dddb2e3fcc723</originalsourceid><addsrcrecordid>eNqFkc1r3DAUxEVoSTZprjkLeunFW31YknUplCVtAgklkJ6FVn7OKsiWK9lp9r-vzIaU9hJ0EHrzm8eIQeiCkjUlhH12O-jXjDBKmFLyCK2oYLTiSop3aEV0rSopuD5Bpzk_EkK05PwYnfBaSdrweoXuNnEegx8ecOzwuItTtG7yT4CnZIfsJx8H3MNkA3axHwM8Q8ZTxBZ38-AWtShjDPseEu7tlPzzB_S-syHD-ct9hn5-u7zfXFU3P75fb77eVK6uhawkE01b10o3TFuwtlPt1jINlLjGboG35cmt6JzowFGhGAHaliED3jmnGD9DXw57x3nbQ-tgKJGDGZPvbdqbaL35Vxn8zjzEJ6OZ1oIsCz69LEjx1wx5Mr3PDkKwA8Q5Gya0LEl1owv68T_0Mc6p_L1QspxGEbZQ6wPlUsw5QfcahhKztGWWtsxrW8WgD4bfPsD-Ddpsri5v_3r_AJxGmqo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2626287029</pqid></control><display><type>article</type><title>Coupling of photoactive transition metal complexes to a functional polymer matrix</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Putra, Miftahussurur Hamidi ; Seidenath, Sebastian ; Kupfer, Stephan ; Gräfe, Stefanie ; Groß, Axel</creator><creatorcontrib>Putra, Miftahussurur Hamidi ; Seidenath, Sebastian ; Kupfer, Stephan ; Gräfe, Stefanie ; Groß, Axel</creatorcontrib><description>Conductive polymers represent a promising alternative to semiconducting oxide electrodes typically used in dye‐sensitized cathodes as they more easily allow a tuning of the physicochemical properties. This can then also be very beneficial for using them in light‐driven catalysis. In this computational study, we address the coupling of Ru‐based photosensitizers to a polymer matrix by combining two different first‐principles electronic structure approaches. We use a periodic density functional theory code to properly account for the delocalized nature of the electronic states in the polymer. These ground state investigations are complemented by time‐dependent density functional theory simulations to assess the Franck‐Condon photophysics of the present photoactive hybrid material based on a molecular model system. Our results are consistent with recent experimental observations and allow to elucidate the light‐driven redox chemical processes – eventually leading to charge separation – in the present functional hybrid systems with potential application as photocathode materials.
The integration of molecular light‐driven catalyst into a polymer matrix allows to tailor photochemical devices as the embedding can give control over charge transfer processes, photochemical reactivity and degradation resistance. Combining periodic and local quantum chemical approaches, we elucidate the electronic coupling between a polymer and a photosensitive complex, which is a prerequisite for a rational tailoring of such systems. Thus, we identify possible routes towards photoinduced excitations that could trigger catalytic reactions at metal centers attached to the photosensitizer.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.202102776</identifier><identifier>PMID: 34761834</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Catalysis ; Cathodes ; Chemical reactions ; Chemistry ; Computer applications ; Conducting polymers ; Coordination compounds ; Coupling (molecular) ; Density functional theory ; Electron states ; electronic coupling ; Electronic structure ; Hybrid systems ; Metal complexes ; organic solar cells ; photoactive complexes ; Photocathodes ; Physicochemical properties ; polymer matrix ; Polymers ; quantum chemistry ; Transition metal compounds</subject><ispartof>Chemistry : a European journal, 2021-12, Vol.27 (68), p.17104-17114</ispartof><rights>2021 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4456-6258d4479829aeaaf7dba29e10c8abe3ddba3a5fc5fec15720e1dddb2e3fcc723</citedby><cites>FETCH-LOGICAL-c4456-6258d4479829aeaaf7dba29e10c8abe3ddba3a5fc5fec15720e1dddb2e3fcc723</cites><orcidid>0000-0003-4037-7331 ; 0000-0002-1747-5809 ; 0000-0002-6428-7528 ; 0000-0001-5363-4152</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.202102776$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.202102776$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Putra, Miftahussurur Hamidi</creatorcontrib><creatorcontrib>Seidenath, Sebastian</creatorcontrib><creatorcontrib>Kupfer, Stephan</creatorcontrib><creatorcontrib>Gräfe, Stefanie</creatorcontrib><creatorcontrib>Groß, Axel</creatorcontrib><title>Coupling of photoactive transition metal complexes to a functional polymer matrix</title><title>Chemistry : a European journal</title><description>Conductive polymers represent a promising alternative to semiconducting oxide electrodes typically used in dye‐sensitized cathodes as they more easily allow a tuning of the physicochemical properties. This can then also be very beneficial for using them in light‐driven catalysis. In this computational study, we address the coupling of Ru‐based photosensitizers to a polymer matrix by combining two different first‐principles electronic structure approaches. We use a periodic density functional theory code to properly account for the delocalized nature of the electronic states in the polymer. These ground state investigations are complemented by time‐dependent density functional theory simulations to assess the Franck‐Condon photophysics of the present photoactive hybrid material based on a molecular model system. Our results are consistent with recent experimental observations and allow to elucidate the light‐driven redox chemical processes – eventually leading to charge separation – in the present functional hybrid systems with potential application as photocathode materials.
The integration of molecular light‐driven catalyst into a polymer matrix allows to tailor photochemical devices as the embedding can give control over charge transfer processes, photochemical reactivity and degradation resistance. Combining periodic and local quantum chemical approaches, we elucidate the electronic coupling between a polymer and a photosensitive complex, which is a prerequisite for a rational tailoring of such systems. Thus, we identify possible routes towards photoinduced excitations that could trigger catalytic reactions at metal centers attached to the photosensitizer.</description><subject>Catalysis</subject><subject>Cathodes</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Computer applications</subject><subject>Conducting polymers</subject><subject>Coordination compounds</subject><subject>Coupling (molecular)</subject><subject>Density functional theory</subject><subject>Electron states</subject><subject>electronic coupling</subject><subject>Electronic structure</subject><subject>Hybrid systems</subject><subject>Metal complexes</subject><subject>organic solar cells</subject><subject>photoactive complexes</subject><subject>Photocathodes</subject><subject>Physicochemical properties</subject><subject>polymer matrix</subject><subject>Polymers</subject><subject>quantum chemistry</subject><subject>Transition metal compounds</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkc1r3DAUxEVoSTZprjkLeunFW31YknUplCVtAgklkJ6FVn7OKsiWK9lp9r-vzIaU9hJ0EHrzm8eIQeiCkjUlhH12O-jXjDBKmFLyCK2oYLTiSop3aEV0rSopuD5Bpzk_EkK05PwYnfBaSdrweoXuNnEegx8ecOzwuItTtG7yT4CnZIfsJx8H3MNkA3axHwM8Q8ZTxBZ38-AWtShjDPseEu7tlPzzB_S-syHD-ct9hn5-u7zfXFU3P75fb77eVK6uhawkE01b10o3TFuwtlPt1jINlLjGboG35cmt6JzowFGhGAHaliED3jmnGD9DXw57x3nbQ-tgKJGDGZPvbdqbaL35Vxn8zjzEJ6OZ1oIsCz69LEjx1wx5Mr3PDkKwA8Q5Gya0LEl1owv68T_0Mc6p_L1QspxGEbZQ6wPlUsw5QfcahhKztGWWtsxrW8WgD4bfPsD-Ddpsri5v_3r_AJxGmqo</recordid><startdate>20211206</startdate><enddate>20211206</enddate><creator>Putra, Miftahussurur Hamidi</creator><creator>Seidenath, Sebastian</creator><creator>Kupfer, Stephan</creator><creator>Gräfe, Stefanie</creator><creator>Groß, Axel</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4037-7331</orcidid><orcidid>https://orcid.org/0000-0002-1747-5809</orcidid><orcidid>https://orcid.org/0000-0002-6428-7528</orcidid><orcidid>https://orcid.org/0000-0001-5363-4152</orcidid></search><sort><creationdate>20211206</creationdate><title>Coupling of photoactive transition metal complexes to a functional polymer matrix</title><author>Putra, Miftahussurur Hamidi ; Seidenath, Sebastian ; Kupfer, Stephan ; Gräfe, Stefanie ; Groß, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4456-6258d4479829aeaaf7dba29e10c8abe3ddba3a5fc5fec15720e1dddb2e3fcc723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Catalysis</topic><topic>Cathodes</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Computer applications</topic><topic>Conducting polymers</topic><topic>Coordination compounds</topic><topic>Coupling (molecular)</topic><topic>Density functional theory</topic><topic>Electron states</topic><topic>electronic coupling</topic><topic>Electronic structure</topic><topic>Hybrid systems</topic><topic>Metal complexes</topic><topic>organic solar cells</topic><topic>photoactive complexes</topic><topic>Photocathodes</topic><topic>Physicochemical properties</topic><topic>polymer matrix</topic><topic>Polymers</topic><topic>quantum chemistry</topic><topic>Transition metal compounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Putra, Miftahussurur Hamidi</creatorcontrib><creatorcontrib>Seidenath, Sebastian</creatorcontrib><creatorcontrib>Kupfer, Stephan</creatorcontrib><creatorcontrib>Gräfe, Stefanie</creatorcontrib><creatorcontrib>Groß, Axel</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Putra, Miftahussurur Hamidi</au><au>Seidenath, Sebastian</au><au>Kupfer, Stephan</au><au>Gräfe, Stefanie</au><au>Groß, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coupling of photoactive transition metal complexes to a functional polymer matrix</atitle><jtitle>Chemistry : a European journal</jtitle><date>2021-12-06</date><risdate>2021</risdate><volume>27</volume><issue>68</issue><spage>17104</spage><epage>17114</epage><pages>17104-17114</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>Conductive polymers represent a promising alternative to semiconducting oxide electrodes typically used in dye‐sensitized cathodes as they more easily allow a tuning of the physicochemical properties. This can then also be very beneficial for using them in light‐driven catalysis. In this computational study, we address the coupling of Ru‐based photosensitizers to a polymer matrix by combining two different first‐principles electronic structure approaches. We use a periodic density functional theory code to properly account for the delocalized nature of the electronic states in the polymer. These ground state investigations are complemented by time‐dependent density functional theory simulations to assess the Franck‐Condon photophysics of the present photoactive hybrid material based on a molecular model system. Our results are consistent with recent experimental observations and allow to elucidate the light‐driven redox chemical processes – eventually leading to charge separation – in the present functional hybrid systems with potential application as photocathode materials.
The integration of molecular light‐driven catalyst into a polymer matrix allows to tailor photochemical devices as the embedding can give control over charge transfer processes, photochemical reactivity and degradation resistance. Combining periodic and local quantum chemical approaches, we elucidate the electronic coupling between a polymer and a photosensitive complex, which is a prerequisite for a rational tailoring of such systems. Thus, we identify possible routes towards photoinduced excitations that could trigger catalytic reactions at metal centers attached to the photosensitizer.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34761834</pmid><doi>10.1002/chem.202102776</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4037-7331</orcidid><orcidid>https://orcid.org/0000-0002-1747-5809</orcidid><orcidid>https://orcid.org/0000-0002-6428-7528</orcidid><orcidid>https://orcid.org/0000-0001-5363-4152</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0947-6539 |
ispartof | Chemistry : a European journal, 2021-12, Vol.27 (68), p.17104-17114 |
issn | 0947-6539 1521-3765 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9299502 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Catalysis Cathodes Chemical reactions Chemistry Computer applications Conducting polymers Coordination compounds Coupling (molecular) Density functional theory Electron states electronic coupling Electronic structure Hybrid systems Metal complexes organic solar cells photoactive complexes Photocathodes Physicochemical properties polymer matrix Polymers quantum chemistry Transition metal compounds |
title | Coupling of photoactive transition metal complexes to a functional polymer matrix |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T04%3A20%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coupling%20of%20photoactive%20transition%20metal%20complexes%20to%20a%20functional%20polymer%20matrix&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Putra,%20Miftahussurur%20Hamidi&rft.date=2021-12-06&rft.volume=27&rft.issue=68&rft.spage=17104&rft.epage=17114&rft.pages=17104-17114&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.202102776&rft_dat=%3Cproquest_pubme%3E2626287029%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2626287029&rft_id=info:pmid/34761834&rfr_iscdi=true |