Genome and gene evolution of seahorse species revealed by the chromosome‐level genome of Hippocampus abdominalis

Seahorses belong to the teleost family Syngnathidae that evolved a distinct body plan and unique male pregnancy compared to other teleosts. As a classic model for studying evolution of viviparity and sexual selection of teleosts, seahorse species still lack a publicly available high‐quality referenc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular ecology resources 2022-05, Vol.22 (4), p.1465-1477
Hauptverfasser: He, Libin, Long, Xin, Qi, Jianfei, Wang, Zongji, Huang, Zhen, Wu, Shuiqing, Zhang, Xingtan, Luo, Huiyu, Chen, Xinxin, Lin, Jinbo, Yang, Qiuhua, Huang, Shiyu, Zhou, Qi, Zheng, Leyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1477
container_issue 4
container_start_page 1465
container_title Molecular ecology resources
container_volume 22
creator He, Libin
Long, Xin
Qi, Jianfei
Wang, Zongji
Huang, Zhen
Wu, Shuiqing
Zhang, Xingtan
Luo, Huiyu
Chen, Xinxin
Lin, Jinbo
Yang, Qiuhua
Huang, Shiyu
Zhou, Qi
Zheng, Leyun
description Seahorses belong to the teleost family Syngnathidae that evolved a distinct body plan and unique male pregnancy compared to other teleosts. As a classic model for studying evolution of viviparity and sexual selection of teleosts, seahorse species still lack a publicly available high‐quality reference genome. Here, we generated the genome assembly of the big‐belly seahorse, Hippocampus abdominalis with long‐read and Hi‐C technologies. We managed to place over 99% of the total length of 444.7 Mb of assembled genome into 21 linkage groups with almost no gaps. We reconstructed a phylogenomic tree with the big‐belly seahorse genome and other representative Syngnathidae and teleost species. We also reconstructed the historical population dynamics of four representative Syngnathidae species. We found the gene families that underwent expansion or contraction in the Syngnathidae ancestor were enriched for immune‐related or ion transporter gene ontology terms. Many of these genes were also reported to show a dynamic expression pattern during the pregnancy stages of H. abdominalis. We also identified putative positively selected genes in the Syngnathidae ancestor or in H. abdominalis, whose mouse mutants are enriched for abnormal craniofacial and limb morphological phenotypes. Overall, our study provides an important genome resource for evolutionary and developmental studies of seahorse species, and candidate genes for future experimental works.
doi_str_mv 10.1111/1755-0998.13541
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9298228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646713411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4671-a618d77e93788471ef3ea8071569e481846ad29fe48dc9800abeb6798b6d58123</originalsourceid><addsrcrecordid>eNqFkctO3DAUhq2qqFzKurvKUjfdDNiJr5tKFeImAd20EjvLSU4YIycO9mTQ7PoIPCNPgsPAiHaDNz7y-c4nH_0IfaHkgOZzSCXnM6K1OqAlZ_QD2tm8fNzU6nob7aZ0S4ggWrJPaLtkQitW6B0UT6EPHWDbN_gGesCwDH5cuNDj0OIEdh5iApwGqB0kHGEJ1kODqxVezAHX8xi6kLLh8e-Dz00_WSZhnj5zwxBq2w1jwrZqQud66136jLZa6xPsv9x76M_J8e-js9nFr9Pzo58Xs5oJSWdWUNVICbqUSjFJoS3BKiIpFxqYoooJ2xS6zXVTa0WIraASUqtKNFzRotxDP9beYaw6aGroF9F6M0TX2bgywTrzb6d3c3MTlkYXWhWFyoLvL4IY7kZIC9O5VIP3tocwJlNwJRgnnOiMfvsPvQ1jzOtmSkzrlIzSTB2uqTqGlCK0m89QYqY8zZSYmdIzz3nmia9vd9jwrwFmgK-Be-dh9Z7PXB5frcVPotys9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646713411</pqid></control><display><type>article</type><title>Genome and gene evolution of seahorse species revealed by the chromosome‐level genome of Hippocampus abdominalis</title><source>MEDLINE</source><source>Wiley Online Library Journals</source><creator>He, Libin ; Long, Xin ; Qi, Jianfei ; Wang, Zongji ; Huang, Zhen ; Wu, Shuiqing ; Zhang, Xingtan ; Luo, Huiyu ; Chen, Xinxin ; Lin, Jinbo ; Yang, Qiuhua ; Huang, Shiyu ; Zhou, Qi ; Zheng, Leyun</creator><creatorcontrib>He, Libin ; Long, Xin ; Qi, Jianfei ; Wang, Zongji ; Huang, Zhen ; Wu, Shuiqing ; Zhang, Xingtan ; Luo, Huiyu ; Chen, Xinxin ; Lin, Jinbo ; Yang, Qiuhua ; Huang, Shiyu ; Zhou, Qi ; Zheng, Leyun</creatorcontrib><description>Seahorses belong to the teleost family Syngnathidae that evolved a distinct body plan and unique male pregnancy compared to other teleosts. As a classic model for studying evolution of viviparity and sexual selection of teleosts, seahorse species still lack a publicly available high‐quality reference genome. Here, we generated the genome assembly of the big‐belly seahorse, Hippocampus abdominalis with long‐read and Hi‐C technologies. We managed to place over 99% of the total length of 444.7 Mb of assembled genome into 21 linkage groups with almost no gaps. We reconstructed a phylogenomic tree with the big‐belly seahorse genome and other representative Syngnathidae and teleost species. We also reconstructed the historical population dynamics of four representative Syngnathidae species. We found the gene families that underwent expansion or contraction in the Syngnathidae ancestor were enriched for immune‐related or ion transporter gene ontology terms. Many of these genes were also reported to show a dynamic expression pattern during the pregnancy stages of H. abdominalis. We also identified putative positively selected genes in the Syngnathidae ancestor or in H. abdominalis, whose mouse mutants are enriched for abnormal craniofacial and limb morphological phenotypes. Overall, our study provides an important genome resource for evolutionary and developmental studies of seahorse species, and candidate genes for future experimental works.</description><identifier>ISSN: 1755-098X</identifier><identifier>ISSN: 1755-0998</identifier><identifier>EISSN: 1755-0998</identifier><identifier>DOI: 10.1111/1755-0998.13541</identifier><identifier>PMID: 34698429</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Abdomen ; Animals ; Chromosomes ; chromosome‐level genome ; Evolution ; Evolution, Molecular ; Gene families ; Genes ; Genomes ; Hemiarthrus abdominalis ; Hippocampus abdominalis ; Hippocampus hippocampus ; Hi‐C ; Male ; male brood pouch ; Mice ; Phenotypes ; Phylogeny ; Population dynamics ; Pregnancy ; Resource ; RESOURCE ARTICLES ; Seahorse ; Sexual selection ; Smegmamorpha - genetics ; Species ; Syngnathidae ; Viviparity</subject><ispartof>Molecular ecology resources, 2022-05, Vol.22 (4), p.1465-1477</ispartof><rights>2021 The Authors. published by John Wiley &amp; Sons Ltd.</rights><rights>2021 The Authors. Molecular Ecology Resources published by John Wiley &amp; Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4671-a618d77e93788471ef3ea8071569e481846ad29fe48dc9800abeb6798b6d58123</citedby><cites>FETCH-LOGICAL-c4671-a618d77e93788471ef3ea8071569e481846ad29fe48dc9800abeb6798b6d58123</cites><orcidid>0000-0002-7419-2047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1755-0998.13541$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1755-0998.13541$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34698429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Libin</creatorcontrib><creatorcontrib>Long, Xin</creatorcontrib><creatorcontrib>Qi, Jianfei</creatorcontrib><creatorcontrib>Wang, Zongji</creatorcontrib><creatorcontrib>Huang, Zhen</creatorcontrib><creatorcontrib>Wu, Shuiqing</creatorcontrib><creatorcontrib>Zhang, Xingtan</creatorcontrib><creatorcontrib>Luo, Huiyu</creatorcontrib><creatorcontrib>Chen, Xinxin</creatorcontrib><creatorcontrib>Lin, Jinbo</creatorcontrib><creatorcontrib>Yang, Qiuhua</creatorcontrib><creatorcontrib>Huang, Shiyu</creatorcontrib><creatorcontrib>Zhou, Qi</creatorcontrib><creatorcontrib>Zheng, Leyun</creatorcontrib><title>Genome and gene evolution of seahorse species revealed by the chromosome‐level genome of Hippocampus abdominalis</title><title>Molecular ecology resources</title><addtitle>Mol Ecol Resour</addtitle><description>Seahorses belong to the teleost family Syngnathidae that evolved a distinct body plan and unique male pregnancy compared to other teleosts. As a classic model for studying evolution of viviparity and sexual selection of teleosts, seahorse species still lack a publicly available high‐quality reference genome. Here, we generated the genome assembly of the big‐belly seahorse, Hippocampus abdominalis with long‐read and Hi‐C technologies. We managed to place over 99% of the total length of 444.7 Mb of assembled genome into 21 linkage groups with almost no gaps. We reconstructed a phylogenomic tree with the big‐belly seahorse genome and other representative Syngnathidae and teleost species. We also reconstructed the historical population dynamics of four representative Syngnathidae species. We found the gene families that underwent expansion or contraction in the Syngnathidae ancestor were enriched for immune‐related or ion transporter gene ontology terms. Many of these genes were also reported to show a dynamic expression pattern during the pregnancy stages of H. abdominalis. We also identified putative positively selected genes in the Syngnathidae ancestor or in H. abdominalis, whose mouse mutants are enriched for abnormal craniofacial and limb morphological phenotypes. Overall, our study provides an important genome resource for evolutionary and developmental studies of seahorse species, and candidate genes for future experimental works.</description><subject>Abdomen</subject><subject>Animals</subject><subject>Chromosomes</subject><subject>chromosome‐level genome</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Gene families</subject><subject>Genes</subject><subject>Genomes</subject><subject>Hemiarthrus abdominalis</subject><subject>Hippocampus abdominalis</subject><subject>Hippocampus hippocampus</subject><subject>Hi‐C</subject><subject>Male</subject><subject>male brood pouch</subject><subject>Mice</subject><subject>Phenotypes</subject><subject>Phylogeny</subject><subject>Population dynamics</subject><subject>Pregnancy</subject><subject>Resource</subject><subject>RESOURCE ARTICLES</subject><subject>Seahorse</subject><subject>Sexual selection</subject><subject>Smegmamorpha - genetics</subject><subject>Species</subject><subject>Syngnathidae</subject><subject>Viviparity</subject><issn>1755-098X</issn><issn>1755-0998</issn><issn>1755-0998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctO3DAUhq2qqFzKurvKUjfdDNiJr5tKFeImAd20EjvLSU4YIycO9mTQ7PoIPCNPgsPAiHaDNz7y-c4nH_0IfaHkgOZzSCXnM6K1OqAlZ_QD2tm8fNzU6nob7aZ0S4ggWrJPaLtkQitW6B0UT6EPHWDbN_gGesCwDH5cuNDj0OIEdh5iApwGqB0kHGEJ1kODqxVezAHX8xi6kLLh8e-Dz00_WSZhnj5zwxBq2w1jwrZqQud66136jLZa6xPsv9x76M_J8e-js9nFr9Pzo58Xs5oJSWdWUNVICbqUSjFJoS3BKiIpFxqYoooJ2xS6zXVTa0WIraASUqtKNFzRotxDP9beYaw6aGroF9F6M0TX2bgywTrzb6d3c3MTlkYXWhWFyoLvL4IY7kZIC9O5VIP3tocwJlNwJRgnnOiMfvsPvQ1jzOtmSkzrlIzSTB2uqTqGlCK0m89QYqY8zZSYmdIzz3nmia9vd9jwrwFmgK-Be-dh9Z7PXB5frcVPotys9g</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>He, Libin</creator><creator>Long, Xin</creator><creator>Qi, Jianfei</creator><creator>Wang, Zongji</creator><creator>Huang, Zhen</creator><creator>Wu, Shuiqing</creator><creator>Zhang, Xingtan</creator><creator>Luo, Huiyu</creator><creator>Chen, Xinxin</creator><creator>Lin, Jinbo</creator><creator>Yang, Qiuhua</creator><creator>Huang, Shiyu</creator><creator>Zhou, Qi</creator><creator>Zheng, Leyun</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7419-2047</orcidid></search><sort><creationdate>202205</creationdate><title>Genome and gene evolution of seahorse species revealed by the chromosome‐level genome of Hippocampus abdominalis</title><author>He, Libin ; Long, Xin ; Qi, Jianfei ; Wang, Zongji ; Huang, Zhen ; Wu, Shuiqing ; Zhang, Xingtan ; Luo, Huiyu ; Chen, Xinxin ; Lin, Jinbo ; Yang, Qiuhua ; Huang, Shiyu ; Zhou, Qi ; Zheng, Leyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4671-a618d77e93788471ef3ea8071569e481846ad29fe48dc9800abeb6798b6d58123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abdomen</topic><topic>Animals</topic><topic>Chromosomes</topic><topic>chromosome‐level genome</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Gene families</topic><topic>Genes</topic><topic>Genomes</topic><topic>Hemiarthrus abdominalis</topic><topic>Hippocampus abdominalis</topic><topic>Hippocampus hippocampus</topic><topic>Hi‐C</topic><topic>Male</topic><topic>male brood pouch</topic><topic>Mice</topic><topic>Phenotypes</topic><topic>Phylogeny</topic><topic>Population dynamics</topic><topic>Pregnancy</topic><topic>Resource</topic><topic>RESOURCE ARTICLES</topic><topic>Seahorse</topic><topic>Sexual selection</topic><topic>Smegmamorpha - genetics</topic><topic>Species</topic><topic>Syngnathidae</topic><topic>Viviparity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Libin</creatorcontrib><creatorcontrib>Long, Xin</creatorcontrib><creatorcontrib>Qi, Jianfei</creatorcontrib><creatorcontrib>Wang, Zongji</creatorcontrib><creatorcontrib>Huang, Zhen</creatorcontrib><creatorcontrib>Wu, Shuiqing</creatorcontrib><creatorcontrib>Zhang, Xingtan</creatorcontrib><creatorcontrib>Luo, Huiyu</creatorcontrib><creatorcontrib>Chen, Xinxin</creatorcontrib><creatorcontrib>Lin, Jinbo</creatorcontrib><creatorcontrib>Yang, Qiuhua</creatorcontrib><creatorcontrib>Huang, Shiyu</creatorcontrib><creatorcontrib>Zhou, Qi</creatorcontrib><creatorcontrib>Zheng, Leyun</creatorcontrib><collection>Wiley Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular ecology resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Libin</au><au>Long, Xin</au><au>Qi, Jianfei</au><au>Wang, Zongji</au><au>Huang, Zhen</au><au>Wu, Shuiqing</au><au>Zhang, Xingtan</au><au>Luo, Huiyu</au><au>Chen, Xinxin</au><au>Lin, Jinbo</au><au>Yang, Qiuhua</au><au>Huang, Shiyu</au><au>Zhou, Qi</au><au>Zheng, Leyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome and gene evolution of seahorse species revealed by the chromosome‐level genome of Hippocampus abdominalis</atitle><jtitle>Molecular ecology resources</jtitle><addtitle>Mol Ecol Resour</addtitle><date>2022-05</date><risdate>2022</risdate><volume>22</volume><issue>4</issue><spage>1465</spage><epage>1477</epage><pages>1465-1477</pages><issn>1755-098X</issn><issn>1755-0998</issn><eissn>1755-0998</eissn><abstract>Seahorses belong to the teleost family Syngnathidae that evolved a distinct body plan and unique male pregnancy compared to other teleosts. As a classic model for studying evolution of viviparity and sexual selection of teleosts, seahorse species still lack a publicly available high‐quality reference genome. Here, we generated the genome assembly of the big‐belly seahorse, Hippocampus abdominalis with long‐read and Hi‐C technologies. We managed to place over 99% of the total length of 444.7 Mb of assembled genome into 21 linkage groups with almost no gaps. We reconstructed a phylogenomic tree with the big‐belly seahorse genome and other representative Syngnathidae and teleost species. We also reconstructed the historical population dynamics of four representative Syngnathidae species. We found the gene families that underwent expansion or contraction in the Syngnathidae ancestor were enriched for immune‐related or ion transporter gene ontology terms. Many of these genes were also reported to show a dynamic expression pattern during the pregnancy stages of H. abdominalis. We also identified putative positively selected genes in the Syngnathidae ancestor or in H. abdominalis, whose mouse mutants are enriched for abnormal craniofacial and limb morphological phenotypes. Overall, our study provides an important genome resource for evolutionary and developmental studies of seahorse species, and candidate genes for future experimental works.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34698429</pmid><doi>10.1111/1755-0998.13541</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7419-2047</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-098X
ispartof Molecular ecology resources, 2022-05, Vol.22 (4), p.1465-1477
issn 1755-098X
1755-0998
1755-0998
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9298228
source MEDLINE; Wiley Online Library Journals
subjects Abdomen
Animals
Chromosomes
chromosome‐level genome
Evolution
Evolution, Molecular
Gene families
Genes
Genomes
Hemiarthrus abdominalis
Hippocampus abdominalis
Hippocampus hippocampus
Hi‐C
Male
male brood pouch
Mice
Phenotypes
Phylogeny
Population dynamics
Pregnancy
Resource
RESOURCE ARTICLES
Seahorse
Sexual selection
Smegmamorpha - genetics
Species
Syngnathidae
Viviparity
title Genome and gene evolution of seahorse species revealed by the chromosome‐level genome of Hippocampus abdominalis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20and%20gene%20evolution%20of%20seahorse%20species%20revealed%20by%20the%20chromosome%E2%80%90level%20genome%20of%20Hippocampus%20abdominalis&rft.jtitle=Molecular%20ecology%20resources&rft.au=He,%20Libin&rft.date=2022-05&rft.volume=22&rft.issue=4&rft.spage=1465&rft.epage=1477&rft.pages=1465-1477&rft.issn=1755-098X&rft.eissn=1755-0998&rft_id=info:doi/10.1111/1755-0998.13541&rft_dat=%3Cproquest_pubme%3E2646713411%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646713411&rft_id=info:pmid/34698429&rfr_iscdi=true