Genome and gene evolution of seahorse species revealed by the chromosome‐level genome of Hippocampus abdominalis
Seahorses belong to the teleost family Syngnathidae that evolved a distinct body plan and unique male pregnancy compared to other teleosts. As a classic model for studying evolution of viviparity and sexual selection of teleosts, seahorse species still lack a publicly available high‐quality referenc...
Gespeichert in:
Veröffentlicht in: | Molecular ecology resources 2022-05, Vol.22 (4), p.1465-1477 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1477 |
---|---|
container_issue | 4 |
container_start_page | 1465 |
container_title | Molecular ecology resources |
container_volume | 22 |
creator | He, Libin Long, Xin Qi, Jianfei Wang, Zongji Huang, Zhen Wu, Shuiqing Zhang, Xingtan Luo, Huiyu Chen, Xinxin Lin, Jinbo Yang, Qiuhua Huang, Shiyu Zhou, Qi Zheng, Leyun |
description | Seahorses belong to the teleost family Syngnathidae that evolved a distinct body plan and unique male pregnancy compared to other teleosts. As a classic model for studying evolution of viviparity and sexual selection of teleosts, seahorse species still lack a publicly available high‐quality reference genome. Here, we generated the genome assembly of the big‐belly seahorse, Hippocampus abdominalis with long‐read and Hi‐C technologies. We managed to place over 99% of the total length of 444.7 Mb of assembled genome into 21 linkage groups with almost no gaps. We reconstructed a phylogenomic tree with the big‐belly seahorse genome and other representative Syngnathidae and teleost species. We also reconstructed the historical population dynamics of four representative Syngnathidae species. We found the gene families that underwent expansion or contraction in the Syngnathidae ancestor were enriched for immune‐related or ion transporter gene ontology terms. Many of these genes were also reported to show a dynamic expression pattern during the pregnancy stages of H. abdominalis. We also identified putative positively selected genes in the Syngnathidae ancestor or in H. abdominalis, whose mouse mutants are enriched for abnormal craniofacial and limb morphological phenotypes. Overall, our study provides an important genome resource for evolutionary and developmental studies of seahorse species, and candidate genes for future experimental works. |
doi_str_mv | 10.1111/1755-0998.13541 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9298228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2646713411</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4671-a618d77e93788471ef3ea8071569e481846ad29fe48dc9800abeb6798b6d58123</originalsourceid><addsrcrecordid>eNqFkctO3DAUhq2qqFzKurvKUjfdDNiJr5tKFeImAd20EjvLSU4YIycO9mTQ7PoIPCNPgsPAiHaDNz7y-c4nH_0IfaHkgOZzSCXnM6K1OqAlZ_QD2tm8fNzU6nob7aZ0S4ggWrJPaLtkQitW6B0UT6EPHWDbN_gGesCwDH5cuNDj0OIEdh5iApwGqB0kHGEJ1kODqxVezAHX8xi6kLLh8e-Dz00_WSZhnj5zwxBq2w1jwrZqQud66136jLZa6xPsv9x76M_J8e-js9nFr9Pzo58Xs5oJSWdWUNVICbqUSjFJoS3BKiIpFxqYoooJ2xS6zXVTa0WIraASUqtKNFzRotxDP9beYaw6aGroF9F6M0TX2bgywTrzb6d3c3MTlkYXWhWFyoLvL4IY7kZIC9O5VIP3tocwJlNwJRgnnOiMfvsPvQ1jzOtmSkzrlIzSTB2uqTqGlCK0m89QYqY8zZSYmdIzz3nmia9vd9jwrwFmgK-Be-dh9Z7PXB5frcVPotys9g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2646713411</pqid></control><display><type>article</type><title>Genome and gene evolution of seahorse species revealed by the chromosome‐level genome of Hippocampus abdominalis</title><source>MEDLINE</source><source>Wiley Online Library Journals</source><creator>He, Libin ; Long, Xin ; Qi, Jianfei ; Wang, Zongji ; Huang, Zhen ; Wu, Shuiqing ; Zhang, Xingtan ; Luo, Huiyu ; Chen, Xinxin ; Lin, Jinbo ; Yang, Qiuhua ; Huang, Shiyu ; Zhou, Qi ; Zheng, Leyun</creator><creatorcontrib>He, Libin ; Long, Xin ; Qi, Jianfei ; Wang, Zongji ; Huang, Zhen ; Wu, Shuiqing ; Zhang, Xingtan ; Luo, Huiyu ; Chen, Xinxin ; Lin, Jinbo ; Yang, Qiuhua ; Huang, Shiyu ; Zhou, Qi ; Zheng, Leyun</creatorcontrib><description>Seahorses belong to the teleost family Syngnathidae that evolved a distinct body plan and unique male pregnancy compared to other teleosts. As a classic model for studying evolution of viviparity and sexual selection of teleosts, seahorse species still lack a publicly available high‐quality reference genome. Here, we generated the genome assembly of the big‐belly seahorse, Hippocampus abdominalis with long‐read and Hi‐C technologies. We managed to place over 99% of the total length of 444.7 Mb of assembled genome into 21 linkage groups with almost no gaps. We reconstructed a phylogenomic tree with the big‐belly seahorse genome and other representative Syngnathidae and teleost species. We also reconstructed the historical population dynamics of four representative Syngnathidae species. We found the gene families that underwent expansion or contraction in the Syngnathidae ancestor were enriched for immune‐related or ion transporter gene ontology terms. Many of these genes were also reported to show a dynamic expression pattern during the pregnancy stages of H. abdominalis. We also identified putative positively selected genes in the Syngnathidae ancestor or in H. abdominalis, whose mouse mutants are enriched for abnormal craniofacial and limb morphological phenotypes. Overall, our study provides an important genome resource for evolutionary and developmental studies of seahorse species, and candidate genes for future experimental works.</description><identifier>ISSN: 1755-098X</identifier><identifier>ISSN: 1755-0998</identifier><identifier>EISSN: 1755-0998</identifier><identifier>DOI: 10.1111/1755-0998.13541</identifier><identifier>PMID: 34698429</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Abdomen ; Animals ; Chromosomes ; chromosome‐level genome ; Evolution ; Evolution, Molecular ; Gene families ; Genes ; Genomes ; Hemiarthrus abdominalis ; Hippocampus abdominalis ; Hippocampus hippocampus ; Hi‐C ; Male ; male brood pouch ; Mice ; Phenotypes ; Phylogeny ; Population dynamics ; Pregnancy ; Resource ; RESOURCE ARTICLES ; Seahorse ; Sexual selection ; Smegmamorpha - genetics ; Species ; Syngnathidae ; Viviparity</subject><ispartof>Molecular ecology resources, 2022-05, Vol.22 (4), p.1465-1477</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd.</rights><rights>2021 The Authors. Molecular Ecology Resources published by John Wiley & Sons Ltd.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4671-a618d77e93788471ef3ea8071569e481846ad29fe48dc9800abeb6798b6d58123</citedby><cites>FETCH-LOGICAL-c4671-a618d77e93788471ef3ea8071569e481846ad29fe48dc9800abeb6798b6d58123</cites><orcidid>0000-0002-7419-2047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2F1755-0998.13541$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2F1755-0998.13541$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34698429$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Libin</creatorcontrib><creatorcontrib>Long, Xin</creatorcontrib><creatorcontrib>Qi, Jianfei</creatorcontrib><creatorcontrib>Wang, Zongji</creatorcontrib><creatorcontrib>Huang, Zhen</creatorcontrib><creatorcontrib>Wu, Shuiqing</creatorcontrib><creatorcontrib>Zhang, Xingtan</creatorcontrib><creatorcontrib>Luo, Huiyu</creatorcontrib><creatorcontrib>Chen, Xinxin</creatorcontrib><creatorcontrib>Lin, Jinbo</creatorcontrib><creatorcontrib>Yang, Qiuhua</creatorcontrib><creatorcontrib>Huang, Shiyu</creatorcontrib><creatorcontrib>Zhou, Qi</creatorcontrib><creatorcontrib>Zheng, Leyun</creatorcontrib><title>Genome and gene evolution of seahorse species revealed by the chromosome‐level genome of Hippocampus abdominalis</title><title>Molecular ecology resources</title><addtitle>Mol Ecol Resour</addtitle><description>Seahorses belong to the teleost family Syngnathidae that evolved a distinct body plan and unique male pregnancy compared to other teleosts. As a classic model for studying evolution of viviparity and sexual selection of teleosts, seahorse species still lack a publicly available high‐quality reference genome. Here, we generated the genome assembly of the big‐belly seahorse, Hippocampus abdominalis with long‐read and Hi‐C technologies. We managed to place over 99% of the total length of 444.7 Mb of assembled genome into 21 linkage groups with almost no gaps. We reconstructed a phylogenomic tree with the big‐belly seahorse genome and other representative Syngnathidae and teleost species. We also reconstructed the historical population dynamics of four representative Syngnathidae species. We found the gene families that underwent expansion or contraction in the Syngnathidae ancestor were enriched for immune‐related or ion transporter gene ontology terms. Many of these genes were also reported to show a dynamic expression pattern during the pregnancy stages of H. abdominalis. We also identified putative positively selected genes in the Syngnathidae ancestor or in H. abdominalis, whose mouse mutants are enriched for abnormal craniofacial and limb morphological phenotypes. Overall, our study provides an important genome resource for evolutionary and developmental studies of seahorse species, and candidate genes for future experimental works.</description><subject>Abdomen</subject><subject>Animals</subject><subject>Chromosomes</subject><subject>chromosome‐level genome</subject><subject>Evolution</subject><subject>Evolution, Molecular</subject><subject>Gene families</subject><subject>Genes</subject><subject>Genomes</subject><subject>Hemiarthrus abdominalis</subject><subject>Hippocampus abdominalis</subject><subject>Hippocampus hippocampus</subject><subject>Hi‐C</subject><subject>Male</subject><subject>male brood pouch</subject><subject>Mice</subject><subject>Phenotypes</subject><subject>Phylogeny</subject><subject>Population dynamics</subject><subject>Pregnancy</subject><subject>Resource</subject><subject>RESOURCE ARTICLES</subject><subject>Seahorse</subject><subject>Sexual selection</subject><subject>Smegmamorpha - genetics</subject><subject>Species</subject><subject>Syngnathidae</subject><subject>Viviparity</subject><issn>1755-098X</issn><issn>1755-0998</issn><issn>1755-0998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNqFkctO3DAUhq2qqFzKurvKUjfdDNiJr5tKFeImAd20EjvLSU4YIycO9mTQ7PoIPCNPgsPAiHaDNz7y-c4nH_0IfaHkgOZzSCXnM6K1OqAlZ_QD2tm8fNzU6nob7aZ0S4ggWrJPaLtkQitW6B0UT6EPHWDbN_gGesCwDH5cuNDj0OIEdh5iApwGqB0kHGEJ1kODqxVezAHX8xi6kLLh8e-Dz00_WSZhnj5zwxBq2w1jwrZqQud66136jLZa6xPsv9x76M_J8e-js9nFr9Pzo58Xs5oJSWdWUNVICbqUSjFJoS3BKiIpFxqYoooJ2xS6zXVTa0WIraASUqtKNFzRotxDP9beYaw6aGroF9F6M0TX2bgywTrzb6d3c3MTlkYXWhWFyoLvL4IY7kZIC9O5VIP3tocwJlNwJRgnnOiMfvsPvQ1jzOtmSkzrlIzSTB2uqTqGlCK0m89QYqY8zZSYmdIzz3nmia9vd9jwrwFmgK-Be-dh9Z7PXB5frcVPotys9g</recordid><startdate>202205</startdate><enddate>202205</enddate><creator>He, Libin</creator><creator>Long, Xin</creator><creator>Qi, Jianfei</creator><creator>Wang, Zongji</creator><creator>Huang, Zhen</creator><creator>Wu, Shuiqing</creator><creator>Zhang, Xingtan</creator><creator>Luo, Huiyu</creator><creator>Chen, Xinxin</creator><creator>Lin, Jinbo</creator><creator>Yang, Qiuhua</creator><creator>Huang, Shiyu</creator><creator>Zhou, Qi</creator><creator>Zheng, Leyun</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7SS</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7419-2047</orcidid></search><sort><creationdate>202205</creationdate><title>Genome and gene evolution of seahorse species revealed by the chromosome‐level genome of Hippocampus abdominalis</title><author>He, Libin ; Long, Xin ; Qi, Jianfei ; Wang, Zongji ; Huang, Zhen ; Wu, Shuiqing ; Zhang, Xingtan ; Luo, Huiyu ; Chen, Xinxin ; Lin, Jinbo ; Yang, Qiuhua ; Huang, Shiyu ; Zhou, Qi ; Zheng, Leyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4671-a618d77e93788471ef3ea8071569e481846ad29fe48dc9800abeb6798b6d58123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abdomen</topic><topic>Animals</topic><topic>Chromosomes</topic><topic>chromosome‐level genome</topic><topic>Evolution</topic><topic>Evolution, Molecular</topic><topic>Gene families</topic><topic>Genes</topic><topic>Genomes</topic><topic>Hemiarthrus abdominalis</topic><topic>Hippocampus abdominalis</topic><topic>Hippocampus hippocampus</topic><topic>Hi‐C</topic><topic>Male</topic><topic>male brood pouch</topic><topic>Mice</topic><topic>Phenotypes</topic><topic>Phylogeny</topic><topic>Population dynamics</topic><topic>Pregnancy</topic><topic>Resource</topic><topic>RESOURCE ARTICLES</topic><topic>Seahorse</topic><topic>Sexual selection</topic><topic>Smegmamorpha - genetics</topic><topic>Species</topic><topic>Syngnathidae</topic><topic>Viviparity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Libin</creatorcontrib><creatorcontrib>Long, Xin</creatorcontrib><creatorcontrib>Qi, Jianfei</creatorcontrib><creatorcontrib>Wang, Zongji</creatorcontrib><creatorcontrib>Huang, Zhen</creatorcontrib><creatorcontrib>Wu, Shuiqing</creatorcontrib><creatorcontrib>Zhang, Xingtan</creatorcontrib><creatorcontrib>Luo, Huiyu</creatorcontrib><creatorcontrib>Chen, Xinxin</creatorcontrib><creatorcontrib>Lin, Jinbo</creatorcontrib><creatorcontrib>Yang, Qiuhua</creatorcontrib><creatorcontrib>Huang, Shiyu</creatorcontrib><creatorcontrib>Zhou, Qi</creatorcontrib><creatorcontrib>Zheng, Leyun</creatorcontrib><collection>Wiley Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular ecology resources</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Libin</au><au>Long, Xin</au><au>Qi, Jianfei</au><au>Wang, Zongji</au><au>Huang, Zhen</au><au>Wu, Shuiqing</au><au>Zhang, Xingtan</au><au>Luo, Huiyu</au><au>Chen, Xinxin</au><au>Lin, Jinbo</au><au>Yang, Qiuhua</au><au>Huang, Shiyu</au><au>Zhou, Qi</au><au>Zheng, Leyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome and gene evolution of seahorse species revealed by the chromosome‐level genome of Hippocampus abdominalis</atitle><jtitle>Molecular ecology resources</jtitle><addtitle>Mol Ecol Resour</addtitle><date>2022-05</date><risdate>2022</risdate><volume>22</volume><issue>4</issue><spage>1465</spage><epage>1477</epage><pages>1465-1477</pages><issn>1755-098X</issn><issn>1755-0998</issn><eissn>1755-0998</eissn><abstract>Seahorses belong to the teleost family Syngnathidae that evolved a distinct body plan and unique male pregnancy compared to other teleosts. As a classic model for studying evolution of viviparity and sexual selection of teleosts, seahorse species still lack a publicly available high‐quality reference genome. Here, we generated the genome assembly of the big‐belly seahorse, Hippocampus abdominalis with long‐read and Hi‐C technologies. We managed to place over 99% of the total length of 444.7 Mb of assembled genome into 21 linkage groups with almost no gaps. We reconstructed a phylogenomic tree with the big‐belly seahorse genome and other representative Syngnathidae and teleost species. We also reconstructed the historical population dynamics of four representative Syngnathidae species. We found the gene families that underwent expansion or contraction in the Syngnathidae ancestor were enriched for immune‐related or ion transporter gene ontology terms. Many of these genes were also reported to show a dynamic expression pattern during the pregnancy stages of H. abdominalis. We also identified putative positively selected genes in the Syngnathidae ancestor or in H. abdominalis, whose mouse mutants are enriched for abnormal craniofacial and limb morphological phenotypes. Overall, our study provides an important genome resource for evolutionary and developmental studies of seahorse species, and candidate genes for future experimental works.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34698429</pmid><doi>10.1111/1755-0998.13541</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-7419-2047</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-098X |
ispartof | Molecular ecology resources, 2022-05, Vol.22 (4), p.1465-1477 |
issn | 1755-098X 1755-0998 1755-0998 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9298228 |
source | MEDLINE; Wiley Online Library Journals |
subjects | Abdomen Animals Chromosomes chromosome‐level genome Evolution Evolution, Molecular Gene families Genes Genomes Hemiarthrus abdominalis Hippocampus abdominalis Hippocampus hippocampus Hi‐C Male male brood pouch Mice Phenotypes Phylogeny Population dynamics Pregnancy Resource RESOURCE ARTICLES Seahorse Sexual selection Smegmamorpha - genetics Species Syngnathidae Viviparity |
title | Genome and gene evolution of seahorse species revealed by the chromosome‐level genome of Hippocampus abdominalis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T20%3A40%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome%20and%20gene%20evolution%20of%20seahorse%20species%20revealed%20by%20the%20chromosome%E2%80%90level%20genome%20of%20Hippocampus%20abdominalis&rft.jtitle=Molecular%20ecology%20resources&rft.au=He,%20Libin&rft.date=2022-05&rft.volume=22&rft.issue=4&rft.spage=1465&rft.epage=1477&rft.pages=1465-1477&rft.issn=1755-098X&rft.eissn=1755-0998&rft_id=info:doi/10.1111/1755-0998.13541&rft_dat=%3Cproquest_pubme%3E2646713411%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2646713411&rft_id=info:pmid/34698429&rfr_iscdi=true |