The potential and limitations of intrahepatic cholangiocyte organoids to study inborn errors of metabolism
Inborn errors of metabolism (IEMs) comprise a diverse group of individually rare monogenic disorders that affect metabolic pathways. Mutations lead to enzymatic deficiency or dysfunction, which results in intermediate metabolite accumulation or deficit leading to disease phenotypes. Currently, treat...
Gespeichert in:
Veröffentlicht in: | Journal of inherited metabolic disease 2022-03, Vol.45 (2), p.353-365 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 365 |
---|---|
container_issue | 2 |
container_start_page | 353 |
container_title | Journal of inherited metabolic disease |
container_volume | 45 |
creator | Lehmann, Vivian Schene, Imre F. Ardisasmita, Arif I. Liv, Nalan Veenendaal, Tineke Klumperman, Judith Doef, Hubert P. J. Verkade, Henkjan J. Verstegen, Monique M. A. Laan, Luc J. W. Jans, Judith J. M. Verhoeven‐Duif, Nanda M. Hasselt, Peter M. Nieuwenhuis, Edward E. S. Spee, Bart Fuchs, Sabine A. |
description | Inborn errors of metabolism (IEMs) comprise a diverse group of individually rare monogenic disorders that affect metabolic pathways. Mutations lead to enzymatic deficiency or dysfunction, which results in intermediate metabolite accumulation or deficit leading to disease phenotypes. Currently, treatment options for many IEMs are insufficient. Rarity of individual IEMs hampers therapy development and phenotypic and genetic heterogeneity suggest beneficial effects of personalized approaches. Recently, cultures of patient‐own liver‐derived intrahepatic cholangiocyte organoids (ICOs) have been established. Since most metabolic genes are expressed in the liver, patient‐derived ICOs represent exciting possibilities for in vitro modeling and personalized drug testing for IEMs. However, the exact application range of ICOs remains unclear. To address this, we examined which metabolic pathways can be studied with ICOs and what the potential and limitations of patient‐derived ICOs are to model metabolic functions. We present functional assays in patient ICOs with defects in branched‐chain amino acid metabolism (methylmalonic acidemia), copper metabolism (Wilson disease), and transporter defects (cystic fibrosis). We discuss the broad range of functional assays that can be applied to ICOs, but also address the limitations of these patient‐specific cell models. In doing so, we aim to guide the selection of the appropriate cell model for studies of a specific disease or metabolic process. |
doi_str_mv | 10.1002/jimd.12450 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9298016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2585459125</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4480-5b1912312eb7ba5c87bd1e2eb53b8784e2e730b6c9f29cca861022d34df55f643</originalsourceid><addsrcrecordid>eNp9kcFvFCEYxYnR2LX20j-gIfHSmEwFBhi4mDS1ak2bXuqZAMPsspmBFZia_e_LdttGPXjiA37fy3t5ABxjdIYRIp_WfurPMKEMvQILzLq2IZyz12CBMMWNkIwdgHc5rxFCUjD2Fhy0lHdYim4B1ncrBzexuFC8HqEOPRz95IsuPoYM4wB9KEmv3Ka-WGhXcdRh6aPdFgdjWuoQfZ9hiTCXud9W2sQUoEsppsf1yRVt4ujz9B68GfSY3dHTeQh-fr28u_jeXN9-u7o4v24spQI1zGCJSYuJM53RzIrO9NjVG2uN6AStY9ciw60ciLRWC44RIX1L-4GxgdP2EHze625mM7neul2AUW2Sn3Taqqi9-vsn-JVaxnsliRQI8ypw-iSQ4q_Z5aImn60ba3IX56wIE4yyapJV9MM_6DrOKdR4ivBWimqHk0p93FM2xZyTG17MYKR2Fapdheqxwgqf_Gn_BX3urAJ4D_z2o9v-R0r9uLr5shd9ADAaqTk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2639864362</pqid></control><display><type>article</type><title>The potential and limitations of intrahepatic cholangiocyte organoids to study inborn errors of metabolism</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Lehmann, Vivian ; Schene, Imre F. ; Ardisasmita, Arif I. ; Liv, Nalan ; Veenendaal, Tineke ; Klumperman, Judith ; Doef, Hubert P. J. ; Verkade, Henkjan J. ; Verstegen, Monique M. A. ; Laan, Luc J. W. ; Jans, Judith J. M. ; Verhoeven‐Duif, Nanda M. ; Hasselt, Peter M. ; Nieuwenhuis, Edward E. S. ; Spee, Bart ; Fuchs, Sabine A.</creator><creatorcontrib>Lehmann, Vivian ; Schene, Imre F. ; Ardisasmita, Arif I. ; Liv, Nalan ; Veenendaal, Tineke ; Klumperman, Judith ; Doef, Hubert P. J. ; Verkade, Henkjan J. ; Verstegen, Monique M. A. ; Laan, Luc J. W. ; Jans, Judith J. M. ; Verhoeven‐Duif, Nanda M. ; Hasselt, Peter M. ; Nieuwenhuis, Edward E. S. ; Spee, Bart ; Fuchs, Sabine A.</creatorcontrib><description>Inborn errors of metabolism (IEMs) comprise a diverse group of individually rare monogenic disorders that affect metabolic pathways. Mutations lead to enzymatic deficiency or dysfunction, which results in intermediate metabolite accumulation or deficit leading to disease phenotypes. Currently, treatment options for many IEMs are insufficient. Rarity of individual IEMs hampers therapy development and phenotypic and genetic heterogeneity suggest beneficial effects of personalized approaches. Recently, cultures of patient‐own liver‐derived intrahepatic cholangiocyte organoids (ICOs) have been established. Since most metabolic genes are expressed in the liver, patient‐derived ICOs represent exciting possibilities for in vitro modeling and personalized drug testing for IEMs. However, the exact application range of ICOs remains unclear. To address this, we examined which metabolic pathways can be studied with ICOs and what the potential and limitations of patient‐derived ICOs are to model metabolic functions. We present functional assays in patient ICOs with defects in branched‐chain amino acid metabolism (methylmalonic acidemia), copper metabolism (Wilson disease), and transporter defects (cystic fibrosis). We discuss the broad range of functional assays that can be applied to ICOs, but also address the limitations of these patient‐specific cell models. In doing so, we aim to guide the selection of the appropriate cell model for studies of a specific disease or metabolic process.</description><identifier>ISSN: 0141-8955</identifier><identifier>EISSN: 1573-2665</identifier><identifier>DOI: 10.1002/jimd.12450</identifier><identifier>PMID: 34671987</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Amino Acid Metabolism, Inborn Errors - metabolism ; Amino acids ; Cell culture ; Cystic fibrosis ; Humans ; Inborn errors of metabolism ; intrahepatic cholangiocyte organoids ; Liver ; Liver - metabolism ; Membrane Transport Proteins - metabolism ; Metabolic Networks and Pathways ; Metabolic pathways ; Metabolism ; Metabolites ; methylmalonic acidemia ; Organoids ; Organoids - metabolism ; Original ; Patients ; patient‐specific in vitro modeling ; Phenotypes ; Wilson disease ; Wilson's disease</subject><ispartof>Journal of inherited metabolic disease, 2022-03, Vol.45 (2), p.353-365</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd on behalf of SSIEM.</rights><rights>2021 The Authors. Journal of Inherited Metabolic Disease published by John Wiley & Sons Ltd on behalf of SSIEM.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4480-5b1912312eb7ba5c87bd1e2eb53b8784e2e730b6c9f29cca861022d34df55f643</citedby><cites>FETCH-LOGICAL-c4480-5b1912312eb7ba5c87bd1e2eb53b8784e2e730b6c9f29cca861022d34df55f643</cites><orcidid>0000-0002-0651-5334 ; 0000-0003-2654-9117 ; 0000-0001-9908-6673 ; 0000-0001-9147-2406 ; 0000-0003-4835-6228 ; 0000-0001-8511-299X ; 0000-0001-8527-4585 ; 0000-0002-5555-0486 ; 0000-0002-8114-0560</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjimd.12450$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjimd.12450$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34671987$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lehmann, Vivian</creatorcontrib><creatorcontrib>Schene, Imre F.</creatorcontrib><creatorcontrib>Ardisasmita, Arif I.</creatorcontrib><creatorcontrib>Liv, Nalan</creatorcontrib><creatorcontrib>Veenendaal, Tineke</creatorcontrib><creatorcontrib>Klumperman, Judith</creatorcontrib><creatorcontrib>Doef, Hubert P. J.</creatorcontrib><creatorcontrib>Verkade, Henkjan J.</creatorcontrib><creatorcontrib>Verstegen, Monique M. A.</creatorcontrib><creatorcontrib>Laan, Luc J. W.</creatorcontrib><creatorcontrib>Jans, Judith J. M.</creatorcontrib><creatorcontrib>Verhoeven‐Duif, Nanda M.</creatorcontrib><creatorcontrib>Hasselt, Peter M.</creatorcontrib><creatorcontrib>Nieuwenhuis, Edward E. S.</creatorcontrib><creatorcontrib>Spee, Bart</creatorcontrib><creatorcontrib>Fuchs, Sabine A.</creatorcontrib><title>The potential and limitations of intrahepatic cholangiocyte organoids to study inborn errors of metabolism</title><title>Journal of inherited metabolic disease</title><addtitle>J Inherit Metab Dis</addtitle><description>Inborn errors of metabolism (IEMs) comprise a diverse group of individually rare monogenic disorders that affect metabolic pathways. Mutations lead to enzymatic deficiency or dysfunction, which results in intermediate metabolite accumulation or deficit leading to disease phenotypes. Currently, treatment options for many IEMs are insufficient. Rarity of individual IEMs hampers therapy development and phenotypic and genetic heterogeneity suggest beneficial effects of personalized approaches. Recently, cultures of patient‐own liver‐derived intrahepatic cholangiocyte organoids (ICOs) have been established. Since most metabolic genes are expressed in the liver, patient‐derived ICOs represent exciting possibilities for in vitro modeling and personalized drug testing for IEMs. However, the exact application range of ICOs remains unclear. To address this, we examined which metabolic pathways can be studied with ICOs and what the potential and limitations of patient‐derived ICOs are to model metabolic functions. We present functional assays in patient ICOs with defects in branched‐chain amino acid metabolism (methylmalonic acidemia), copper metabolism (Wilson disease), and transporter defects (cystic fibrosis). We discuss the broad range of functional assays that can be applied to ICOs, but also address the limitations of these patient‐specific cell models. In doing so, we aim to guide the selection of the appropriate cell model for studies of a specific disease or metabolic process.</description><subject>Amino Acid Metabolism, Inborn Errors - metabolism</subject><subject>Amino acids</subject><subject>Cell culture</subject><subject>Cystic fibrosis</subject><subject>Humans</subject><subject>Inborn errors of metabolism</subject><subject>intrahepatic cholangiocyte organoids</subject><subject>Liver</subject><subject>Liver - metabolism</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Metabolic Networks and Pathways</subject><subject>Metabolic pathways</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>methylmalonic acidemia</subject><subject>Organoids</subject><subject>Organoids - metabolism</subject><subject>Original</subject><subject>Patients</subject><subject>patient‐specific in vitro modeling</subject><subject>Phenotypes</subject><subject>Wilson disease</subject><subject>Wilson's disease</subject><issn>0141-8955</issn><issn>1573-2665</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>EIF</sourceid><recordid>eNp9kcFvFCEYxYnR2LX20j-gIfHSmEwFBhi4mDS1ak2bXuqZAMPsspmBFZia_e_LdttGPXjiA37fy3t5ABxjdIYRIp_WfurPMKEMvQILzLq2IZyz12CBMMWNkIwdgHc5rxFCUjD2Fhy0lHdYim4B1ncrBzexuFC8HqEOPRz95IsuPoYM4wB9KEmv3Ka-WGhXcdRh6aPdFgdjWuoQfZ9hiTCXud9W2sQUoEsppsf1yRVt4ujz9B68GfSY3dHTeQh-fr28u_jeXN9-u7o4v24spQI1zGCJSYuJM53RzIrO9NjVG2uN6AStY9ciw60ciLRWC44RIX1L-4GxgdP2EHze625mM7neul2AUW2Sn3Taqqi9-vsn-JVaxnsliRQI8ypw-iSQ4q_Z5aImn60ba3IX56wIE4yyapJV9MM_6DrOKdR4ivBWimqHk0p93FM2xZyTG17MYKR2Fapdheqxwgqf_Gn_BX3urAJ4D_z2o9v-R0r9uLr5shd9ADAaqTk</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Lehmann, Vivian</creator><creator>Schene, Imre F.</creator><creator>Ardisasmita, Arif I.</creator><creator>Liv, Nalan</creator><creator>Veenendaal, Tineke</creator><creator>Klumperman, Judith</creator><creator>Doef, Hubert P. J.</creator><creator>Verkade, Henkjan J.</creator><creator>Verstegen, Monique M. A.</creator><creator>Laan, Luc J. W.</creator><creator>Jans, Judith J. M.</creator><creator>Verhoeven‐Duif, Nanda M.</creator><creator>Hasselt, Peter M.</creator><creator>Nieuwenhuis, Edward E. S.</creator><creator>Spee, Bart</creator><creator>Fuchs, Sabine A.</creator><general>John Wiley & Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>24P</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>K9.</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0651-5334</orcidid><orcidid>https://orcid.org/0000-0003-2654-9117</orcidid><orcidid>https://orcid.org/0000-0001-9908-6673</orcidid><orcidid>https://orcid.org/0000-0001-9147-2406</orcidid><orcidid>https://orcid.org/0000-0003-4835-6228</orcidid><orcidid>https://orcid.org/0000-0001-8511-299X</orcidid><orcidid>https://orcid.org/0000-0001-8527-4585</orcidid><orcidid>https://orcid.org/0000-0002-5555-0486</orcidid><orcidid>https://orcid.org/0000-0002-8114-0560</orcidid></search><sort><creationdate>202203</creationdate><title>The potential and limitations of intrahepatic cholangiocyte organoids to study inborn errors of metabolism</title><author>Lehmann, Vivian ; Schene, Imre F. ; Ardisasmita, Arif I. ; Liv, Nalan ; Veenendaal, Tineke ; Klumperman, Judith ; Doef, Hubert P. J. ; Verkade, Henkjan J. ; Verstegen, Monique M. A. ; Laan, Luc J. W. ; Jans, Judith J. M. ; Verhoeven‐Duif, Nanda M. ; Hasselt, Peter M. ; Nieuwenhuis, Edward E. S. ; Spee, Bart ; Fuchs, Sabine A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4480-5b1912312eb7ba5c87bd1e2eb53b8784e2e730b6c9f29cca861022d34df55f643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino Acid Metabolism, Inborn Errors - metabolism</topic><topic>Amino acids</topic><topic>Cell culture</topic><topic>Cystic fibrosis</topic><topic>Humans</topic><topic>Inborn errors of metabolism</topic><topic>intrahepatic cholangiocyte organoids</topic><topic>Liver</topic><topic>Liver - metabolism</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Metabolic Networks and Pathways</topic><topic>Metabolic pathways</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>methylmalonic acidemia</topic><topic>Organoids</topic><topic>Organoids - metabolism</topic><topic>Original</topic><topic>Patients</topic><topic>patient‐specific in vitro modeling</topic><topic>Phenotypes</topic><topic>Wilson disease</topic><topic>Wilson's disease</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lehmann, Vivian</creatorcontrib><creatorcontrib>Schene, Imre F.</creatorcontrib><creatorcontrib>Ardisasmita, Arif I.</creatorcontrib><creatorcontrib>Liv, Nalan</creatorcontrib><creatorcontrib>Veenendaal, Tineke</creatorcontrib><creatorcontrib>Klumperman, Judith</creatorcontrib><creatorcontrib>Doef, Hubert P. J.</creatorcontrib><creatorcontrib>Verkade, Henkjan J.</creatorcontrib><creatorcontrib>Verstegen, Monique M. A.</creatorcontrib><creatorcontrib>Laan, Luc J. W.</creatorcontrib><creatorcontrib>Jans, Judith J. M.</creatorcontrib><creatorcontrib>Verhoeven‐Duif, Nanda M.</creatorcontrib><creatorcontrib>Hasselt, Peter M.</creatorcontrib><creatorcontrib>Nieuwenhuis, Edward E. S.</creatorcontrib><creatorcontrib>Spee, Bart</creatorcontrib><creatorcontrib>Fuchs, Sabine A.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of inherited metabolic disease</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lehmann, Vivian</au><au>Schene, Imre F.</au><au>Ardisasmita, Arif I.</au><au>Liv, Nalan</au><au>Veenendaal, Tineke</au><au>Klumperman, Judith</au><au>Doef, Hubert P. J.</au><au>Verkade, Henkjan J.</au><au>Verstegen, Monique M. A.</au><au>Laan, Luc J. W.</au><au>Jans, Judith J. M.</au><au>Verhoeven‐Duif, Nanda M.</au><au>Hasselt, Peter M.</au><au>Nieuwenhuis, Edward E. S.</au><au>Spee, Bart</au><au>Fuchs, Sabine A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The potential and limitations of intrahepatic cholangiocyte organoids to study inborn errors of metabolism</atitle><jtitle>Journal of inherited metabolic disease</jtitle><addtitle>J Inherit Metab Dis</addtitle><date>2022-03</date><risdate>2022</risdate><volume>45</volume><issue>2</issue><spage>353</spage><epage>365</epage><pages>353-365</pages><issn>0141-8955</issn><eissn>1573-2665</eissn><abstract>Inborn errors of metabolism (IEMs) comprise a diverse group of individually rare monogenic disorders that affect metabolic pathways. Mutations lead to enzymatic deficiency or dysfunction, which results in intermediate metabolite accumulation or deficit leading to disease phenotypes. Currently, treatment options for many IEMs are insufficient. Rarity of individual IEMs hampers therapy development and phenotypic and genetic heterogeneity suggest beneficial effects of personalized approaches. Recently, cultures of patient‐own liver‐derived intrahepatic cholangiocyte organoids (ICOs) have been established. Since most metabolic genes are expressed in the liver, patient‐derived ICOs represent exciting possibilities for in vitro modeling and personalized drug testing for IEMs. However, the exact application range of ICOs remains unclear. To address this, we examined which metabolic pathways can be studied with ICOs and what the potential and limitations of patient‐derived ICOs are to model metabolic functions. We present functional assays in patient ICOs with defects in branched‐chain amino acid metabolism (methylmalonic acidemia), copper metabolism (Wilson disease), and transporter defects (cystic fibrosis). We discuss the broad range of functional assays that can be applied to ICOs, but also address the limitations of these patient‐specific cell models. In doing so, we aim to guide the selection of the appropriate cell model for studies of a specific disease or metabolic process.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>34671987</pmid><doi>10.1002/jimd.12450</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-0651-5334</orcidid><orcidid>https://orcid.org/0000-0003-2654-9117</orcidid><orcidid>https://orcid.org/0000-0001-9908-6673</orcidid><orcidid>https://orcid.org/0000-0001-9147-2406</orcidid><orcidid>https://orcid.org/0000-0003-4835-6228</orcidid><orcidid>https://orcid.org/0000-0001-8511-299X</orcidid><orcidid>https://orcid.org/0000-0001-8527-4585</orcidid><orcidid>https://orcid.org/0000-0002-5555-0486</orcidid><orcidid>https://orcid.org/0000-0002-8114-0560</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0141-8955 |
ispartof | Journal of inherited metabolic disease, 2022-03, Vol.45 (2), p.353-365 |
issn | 0141-8955 1573-2665 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9298016 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Amino Acid Metabolism, Inborn Errors - metabolism Amino acids Cell culture Cystic fibrosis Humans Inborn errors of metabolism intrahepatic cholangiocyte organoids Liver Liver - metabolism Membrane Transport Proteins - metabolism Metabolic Networks and Pathways Metabolic pathways Metabolism Metabolites methylmalonic acidemia Organoids Organoids - metabolism Original Patients patient‐specific in vitro modeling Phenotypes Wilson disease Wilson's disease |
title | The potential and limitations of intrahepatic cholangiocyte organoids to study inborn errors of metabolism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A06%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20potential%20and%20limitations%20of%20intrahepatic%20cholangiocyte%20organoids%20to%20study%20inborn%20errors%20of%20metabolism&rft.jtitle=Journal%20of%20inherited%20metabolic%20disease&rft.au=Lehmann,%20Vivian&rft.date=2022-03&rft.volume=45&rft.issue=2&rft.spage=353&rft.epage=365&rft.pages=353-365&rft.issn=0141-8955&rft.eissn=1573-2665&rft_id=info:doi/10.1002/jimd.12450&rft_dat=%3Cproquest_pubme%3E2585459125%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2639864362&rft_id=info:pmid/34671987&rfr_iscdi=true |