Sources of ambient PM2.5 exposure in 96 global cities

To improve air quality, knowledge of the sources and locations of air pollutant emissions is critical. However, for many global cities, no previous estimates exist of how much exposure to fine particulate matter (PM2.5), the largest environmental cause of mortality, is caused by emissions within the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric environment (1994) 2022-10, Vol.286, p.119234-119234, Article 119234
Hauptverfasser: Tessum, Mei W., Anenberg, Susan C., Chafe, Zoe A., Henze, Daven K., Kleiman, Gary, Kheirbek, Iyad, Marshall, Julian D., Tessum, Christopher W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 119234
container_issue
container_start_page 119234
container_title Atmospheric environment (1994)
container_volume 286
creator Tessum, Mei W.
Anenberg, Susan C.
Chafe, Zoe A.
Henze, Daven K.
Kleiman, Gary
Kheirbek, Iyad
Marshall, Julian D.
Tessum, Christopher W.
description To improve air quality, knowledge of the sources and locations of air pollutant emissions is critical. However, for many global cities, no previous estimates exist of how much exposure to fine particulate matter (PM2.5), the largest environmental cause of mortality, is caused by emissions within the city vs. outside its boundaries. We use the Intervention Model for Air Pollution (InMAP) global-through-urban reduced complexity air quality model with a high-resolution, global inventory of pollutant emissions to quantify the contribution of emissions by source type and location for 96 global cities. Among these cities, we find that the fraction of PM2.5 exposure caused by within-city emissions varies widely (μ = 37%; σ = 22%) and is not well-explained by surrounding population density. The list of most-important sources also varies by city. Compared to a more mechanistically detailed model, InMAP predicts urban measured concentrations with lower bias and error but also lower correlation. Predictive accuracy in urban areas is not particularly high with either model, suggesting an opportunity for improving global urban air emission inventories. We expect the results herein can be useful as a screening tool for policy options and, in the absence of available resources for further analysis, to inform policy action to improve public health. •The contributions of different air pollution sources vary widely among cities.•The contributions of within-city vs. external emission sources to a city's air pollution also varies widely among cities.•The contributions above cannot be accurately predicted without air quality modeling.•An opportunity exists to improve global emission inventories in urban areas.
doi_str_mv 10.1016/j.atmosenv.2022.119234
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9297293</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1352231022002990</els_id><sourcerecordid>2718235613</sourcerecordid><originalsourceid>FETCH-LOGICAL-c481t-41f59d9b9d8ea4c8a8befeee3e76bdacd9a0e687056080bd4f9306bb8fce26733</originalsourceid><addsrcrecordid>eNqNkUtLxDAUhYsoOI7-BenSTWsebZpsRBl8wYiCug5JejtmaJsxaQf997Z0FFzp6l6453wc7omiU4xSjDA7X6eqa1yAdpsSREiKsSA024tmmBc0ITzL9oed5iQhFKPD6CiENUKIFqKYRfmz672BELsqVo220Hbx0wNJ8xg-Ni70HmLbxoLFq9ppVcfGdhbCcXRQqTrAyW7Oo9eb65fFXbJ8vL1fXC0Tk3HcJRmuclEKLUoOKjNccQ0VAFAomC6VKYVCwHiBcoY40mVWCYqY1rwyQFhB6Ty6mLibXjdQmiGdV7XceNso_ymdsvL3pbVvcuW2UhBREDECznYA7957CJ1sbDBQ16oF1wdJCoJJzgUl_5BiTmjO8Ehlk9R4F4KH6icRRnLsRK7ldydy7EROnQzGy8kIw9O2FrwMZni5gdJ6MJ0snf0L8QU1KZjo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2718235613</pqid></control><display><type>article</type><title>Sources of ambient PM2.5 exposure in 96 global cities</title><source>Elsevier ScienceDirect Journals</source><creator>Tessum, Mei W. ; Anenberg, Susan C. ; Chafe, Zoe A. ; Henze, Daven K. ; Kleiman, Gary ; Kheirbek, Iyad ; Marshall, Julian D. ; Tessum, Christopher W.</creator><creatorcontrib>Tessum, Mei W. ; Anenberg, Susan C. ; Chafe, Zoe A. ; Henze, Daven K. ; Kleiman, Gary ; Kheirbek, Iyad ; Marshall, Julian D. ; Tessum, Christopher W.</creatorcontrib><description>To improve air quality, knowledge of the sources and locations of air pollutant emissions is critical. However, for many global cities, no previous estimates exist of how much exposure to fine particulate matter (PM2.5), the largest environmental cause of mortality, is caused by emissions within the city vs. outside its boundaries. We use the Intervention Model for Air Pollution (InMAP) global-through-urban reduced complexity air quality model with a high-resolution, global inventory of pollutant emissions to quantify the contribution of emissions by source type and location for 96 global cities. Among these cities, we find that the fraction of PM2.5 exposure caused by within-city emissions varies widely (μ = 37%; σ = 22%) and is not well-explained by surrounding population density. The list of most-important sources also varies by city. Compared to a more mechanistically detailed model, InMAP predicts urban measured concentrations with lower bias and error but also lower correlation. Predictive accuracy in urban areas is not particularly high with either model, suggesting an opportunity for improving global urban air emission inventories. We expect the results herein can be useful as a screening tool for policy options and, in the absence of available resources for further analysis, to inform policy action to improve public health. •The contributions of different air pollution sources vary widely among cities.•The contributions of within-city vs. external emission sources to a city's air pollution also varies widely among cities.•The contributions above cannot be accurately predicted without air quality modeling.•An opportunity exists to improve global emission inventories in urban areas.</description><identifier>ISSN: 1352-2310</identifier><identifier>EISSN: 1873-2844</identifier><identifier>EISSN: 1352-2310</identifier><identifier>DOI: 10.1016/j.atmosenv.2022.119234</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>air ; air pollutants ; air pollution ; Air quality ; Air quality modeling ; Chemical transport modeling ; environment ; Environmental policy ; Fine particulate matter ; inventories ; issues and policy ; Metropolitan ; mortality ; particulates ; Pollution ; population density ; public health</subject><ispartof>Atmospheric environment (1994), 2022-10, Vol.286, p.119234-119234, Article 119234</ispartof><rights>2022 The Authors</rights><rights>2022 The Authors 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c481t-41f59d9b9d8ea4c8a8befeee3e76bdacd9a0e687056080bd4f9306bb8fce26733</citedby><cites>FETCH-LOGICAL-c481t-41f59d9b9d8ea4c8a8befeee3e76bdacd9a0e687056080bd4f9306bb8fce26733</cites><orcidid>0000-0002-8864-7436 ; 0000-0002-1690-1431 ; 0000-0001-6670-6979 ; 0000-0003-0298-8529 ; 0000-0003-4087-1209</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1352231022002990$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids></links><search><creatorcontrib>Tessum, Mei W.</creatorcontrib><creatorcontrib>Anenberg, Susan C.</creatorcontrib><creatorcontrib>Chafe, Zoe A.</creatorcontrib><creatorcontrib>Henze, Daven K.</creatorcontrib><creatorcontrib>Kleiman, Gary</creatorcontrib><creatorcontrib>Kheirbek, Iyad</creatorcontrib><creatorcontrib>Marshall, Julian D.</creatorcontrib><creatorcontrib>Tessum, Christopher W.</creatorcontrib><title>Sources of ambient PM2.5 exposure in 96 global cities</title><title>Atmospheric environment (1994)</title><description>To improve air quality, knowledge of the sources and locations of air pollutant emissions is critical. However, for many global cities, no previous estimates exist of how much exposure to fine particulate matter (PM2.5), the largest environmental cause of mortality, is caused by emissions within the city vs. outside its boundaries. We use the Intervention Model for Air Pollution (InMAP) global-through-urban reduced complexity air quality model with a high-resolution, global inventory of pollutant emissions to quantify the contribution of emissions by source type and location for 96 global cities. Among these cities, we find that the fraction of PM2.5 exposure caused by within-city emissions varies widely (μ = 37%; σ = 22%) and is not well-explained by surrounding population density. The list of most-important sources also varies by city. Compared to a more mechanistically detailed model, InMAP predicts urban measured concentrations with lower bias and error but also lower correlation. Predictive accuracy in urban areas is not particularly high with either model, suggesting an opportunity for improving global urban air emission inventories. We expect the results herein can be useful as a screening tool for policy options and, in the absence of available resources for further analysis, to inform policy action to improve public health. •The contributions of different air pollution sources vary widely among cities.•The contributions of within-city vs. external emission sources to a city's air pollution also varies widely among cities.•The contributions above cannot be accurately predicted without air quality modeling.•An opportunity exists to improve global emission inventories in urban areas.</description><subject>air</subject><subject>air pollutants</subject><subject>air pollution</subject><subject>Air quality</subject><subject>Air quality modeling</subject><subject>Chemical transport modeling</subject><subject>environment</subject><subject>Environmental policy</subject><subject>Fine particulate matter</subject><subject>inventories</subject><subject>issues and policy</subject><subject>Metropolitan</subject><subject>mortality</subject><subject>particulates</subject><subject>Pollution</subject><subject>population density</subject><subject>public health</subject><issn>1352-2310</issn><issn>1873-2844</issn><issn>1352-2310</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNqNkUtLxDAUhYsoOI7-BenSTWsebZpsRBl8wYiCug5JejtmaJsxaQf997Z0FFzp6l6453wc7omiU4xSjDA7X6eqa1yAdpsSREiKsSA024tmmBc0ITzL9oed5iQhFKPD6CiENUKIFqKYRfmz672BELsqVo220Hbx0wNJ8xg-Ni70HmLbxoLFq9ppVcfGdhbCcXRQqTrAyW7Oo9eb65fFXbJ8vL1fXC0Tk3HcJRmuclEKLUoOKjNccQ0VAFAomC6VKYVCwHiBcoY40mVWCYqY1rwyQFhB6Ty6mLibXjdQmiGdV7XceNso_ymdsvL3pbVvcuW2UhBREDECznYA7957CJ1sbDBQ16oF1wdJCoJJzgUl_5BiTmjO8Ehlk9R4F4KH6icRRnLsRK7ldydy7EROnQzGy8kIw9O2FrwMZni5gdJ6MJ0snf0L8QU1KZjo</recordid><startdate>20221001</startdate><enddate>20221001</enddate><creator>Tessum, Mei W.</creator><creator>Anenberg, Susan C.</creator><creator>Chafe, Zoe A.</creator><creator>Henze, Daven K.</creator><creator>Kleiman, Gary</creator><creator>Kheirbek, Iyad</creator><creator>Marshall, Julian D.</creator><creator>Tessum, Christopher W.</creator><general>Elsevier Ltd</general><general>Pergamon</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7S9</scope><scope>L.6</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8864-7436</orcidid><orcidid>https://orcid.org/0000-0002-1690-1431</orcidid><orcidid>https://orcid.org/0000-0001-6670-6979</orcidid><orcidid>https://orcid.org/0000-0003-0298-8529</orcidid><orcidid>https://orcid.org/0000-0003-4087-1209</orcidid></search><sort><creationdate>20221001</creationdate><title>Sources of ambient PM2.5 exposure in 96 global cities</title><author>Tessum, Mei W. ; Anenberg, Susan C. ; Chafe, Zoe A. ; Henze, Daven K. ; Kleiman, Gary ; Kheirbek, Iyad ; Marshall, Julian D. ; Tessum, Christopher W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c481t-41f59d9b9d8ea4c8a8befeee3e76bdacd9a0e687056080bd4f9306bb8fce26733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>air</topic><topic>air pollutants</topic><topic>air pollution</topic><topic>Air quality</topic><topic>Air quality modeling</topic><topic>Chemical transport modeling</topic><topic>environment</topic><topic>Environmental policy</topic><topic>Fine particulate matter</topic><topic>inventories</topic><topic>issues and policy</topic><topic>Metropolitan</topic><topic>mortality</topic><topic>particulates</topic><topic>Pollution</topic><topic>population density</topic><topic>public health</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tessum, Mei W.</creatorcontrib><creatorcontrib>Anenberg, Susan C.</creatorcontrib><creatorcontrib>Chafe, Zoe A.</creatorcontrib><creatorcontrib>Henze, Daven K.</creatorcontrib><creatorcontrib>Kleiman, Gary</creatorcontrib><creatorcontrib>Kheirbek, Iyad</creatorcontrib><creatorcontrib>Marshall, Julian D.</creatorcontrib><creatorcontrib>Tessum, Christopher W.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Atmospheric environment (1994)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tessum, Mei W.</au><au>Anenberg, Susan C.</au><au>Chafe, Zoe A.</au><au>Henze, Daven K.</au><au>Kleiman, Gary</au><au>Kheirbek, Iyad</au><au>Marshall, Julian D.</au><au>Tessum, Christopher W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Sources of ambient PM2.5 exposure in 96 global cities</atitle><jtitle>Atmospheric environment (1994)</jtitle><date>2022-10-01</date><risdate>2022</risdate><volume>286</volume><spage>119234</spage><epage>119234</epage><pages>119234-119234</pages><artnum>119234</artnum><issn>1352-2310</issn><eissn>1873-2844</eissn><eissn>1352-2310</eissn><abstract>To improve air quality, knowledge of the sources and locations of air pollutant emissions is critical. However, for many global cities, no previous estimates exist of how much exposure to fine particulate matter (PM2.5), the largest environmental cause of mortality, is caused by emissions within the city vs. outside its boundaries. We use the Intervention Model for Air Pollution (InMAP) global-through-urban reduced complexity air quality model with a high-resolution, global inventory of pollutant emissions to quantify the contribution of emissions by source type and location for 96 global cities. Among these cities, we find that the fraction of PM2.5 exposure caused by within-city emissions varies widely (μ = 37%; σ = 22%) and is not well-explained by surrounding population density. The list of most-important sources also varies by city. Compared to a more mechanistically detailed model, InMAP predicts urban measured concentrations with lower bias and error but also lower correlation. Predictive accuracy in urban areas is not particularly high with either model, suggesting an opportunity for improving global urban air emission inventories. We expect the results herein can be useful as a screening tool for policy options and, in the absence of available resources for further analysis, to inform policy action to improve public health. •The contributions of different air pollution sources vary widely among cities.•The contributions of within-city vs. external emission sources to a city's air pollution also varies widely among cities.•The contributions above cannot be accurately predicted without air quality modeling.•An opportunity exists to improve global emission inventories in urban areas.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.atmosenv.2022.119234</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-8864-7436</orcidid><orcidid>https://orcid.org/0000-0002-1690-1431</orcidid><orcidid>https://orcid.org/0000-0001-6670-6979</orcidid><orcidid>https://orcid.org/0000-0003-0298-8529</orcidid><orcidid>https://orcid.org/0000-0003-4087-1209</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1352-2310
ispartof Atmospheric environment (1994), 2022-10, Vol.286, p.119234-119234, Article 119234
issn 1352-2310
1873-2844
1352-2310
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9297293
source Elsevier ScienceDirect Journals
subjects air
air pollutants
air pollution
Air quality
Air quality modeling
Chemical transport modeling
environment
Environmental policy
Fine particulate matter
inventories
issues and policy
Metropolitan
mortality
particulates
Pollution
population density
public health
title Sources of ambient PM2.5 exposure in 96 global cities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T15%3A44%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Sources%20of%20ambient%20PM2.5%20exposure%20in%2096%20global%20cities&rft.jtitle=Atmospheric%20environment%20(1994)&rft.au=Tessum,%20Mei%20W.&rft.date=2022-10-01&rft.volume=286&rft.spage=119234&rft.epage=119234&rft.pages=119234-119234&rft.artnum=119234&rft.issn=1352-2310&rft.eissn=1873-2844&rft_id=info:doi/10.1016/j.atmosenv.2022.119234&rft_dat=%3Cproquest_pubme%3E2718235613%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2718235613&rft_id=info:pmid/&rft_els_id=S1352231022002990&rfr_iscdi=true