Predicting Divorce Prospect Using Ensemble Learning: Support Vector Machine, Linear Model, and Neural Network
A divorce is a legal step taken by married people to end their marriage. It occurs after a couple decides to no longer live together as husband and wife. Globally, the divorce rate has more than doubled from 1970 until 2008, with divorces per 1,000 married people rising from 2.6 to 5.5. Divorce occu...
Gespeichert in:
Veröffentlicht in: | Computational intelligence and neuroscience 2022-07, Vol.2022, p.1-15 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Computational intelligence and neuroscience |
container_volume | 2022 |
creator | Sadiq Fareed, Mian Muhammad Raza, Ali Zhao, Na Tariq, Aqil Younas, Faizan Ahmed, Gulnaz Ullah, Saleem Jillani, Syeda Fizzah Abbas, Irfan Aslam, Muhammad |
description | A divorce is a legal step taken by married people to end their marriage. It occurs after a couple decides to no longer live together as husband and wife. Globally, the divorce rate has more than doubled from 1970 until 2008, with divorces per 1,000 married people rising from 2.6 to 5.5. Divorce occurs at a rate of 16.9 per 1,000 married women. According to the experts, over half of all marriages ends in divorce or separation in the United States. A novel ensemble learning technique based on advanced machine learning algorithms is proposed in this study. The support vector machine (SVM), passive aggressive classifier, and neural network (MLP) are applied in the context of divorce prediction. A question-based dataset is created by the field specialist. The responses to the questions provide important information about whether a marriage is likely to turn into divorce in the future. The cross-validation is applied in 5 folds, and the performance results of the evaluation metrics are examined. The accuracy score is 100%, and Receiver Operating Characteristic (ROC) curve accuracy score, recall score, the precision score, and the F1 accuracy score are close to 97% confidently. Our findings examined the key indicators for divorce and the factors that are most significant when predicting the divorce. |
doi_str_mv | 10.1155/2022/3687598 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9293523</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A711330554</galeid><sourcerecordid>A711330554</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-8ad2079338738c371d834a61a166710d176b057e4b4e66d70634f1721f23b8cf3</originalsourceid><addsrcrecordid>eNp9kU1v1DAQhi0EoqVw4wdY4oLELvVHbCccKlWlBaQFKkG5Wo492bokdrCTVvz7OtpVERy4eMbjR-_M-EXoJSVvKRXimBHGjrmslWjqR-iQlmwtmOKPH3IpDtCznG8IEUoQ9hQdcFFLIrk4RMNlAuft5MMWv_e3MVnAlynmEeyEr_JSPg8ZhrYHvAGTQqm8w9_mcYxpwj8KFRP-bOy1D7DCm3Kaco8O-hU2weEvMCfTlzDdxfTzOXrSmT7Di308QlcX59_PPq43Xz98OjvdrG0l-LSujWNENZzXiteWK-pqXhlJDZVSUeKokm3ZBaq2AimdKqtUHVWMdoy3te34ETrZ6Y5zO4CzEKYyhR6TH0z6raPx-u-X4K_1Nt7qhjVcMF4EXu8FUvw1Q5704LOFvjcB4pw1kw1TQnDZFPTVP-hNnFMo6y0UF4o0TP6htqYH7UMXS1-7iOpTRSnnRIiqUKsdZYsFOUH3MDIlenFbL27rvdsFf7PDy-87c-f_T98DZC6l6w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2693570926</pqid></control><display><type>article</type><title>Predicting Divorce Prospect Using Ensemble Learning: Support Vector Machine, Linear Model, and Neural Network</title><source>Wiley Online Library Open Access</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>PubMed Central Open Access</source><creator>Sadiq Fareed, Mian Muhammad ; Raza, Ali ; Zhao, Na ; Tariq, Aqil ; Younas, Faizan ; Ahmed, Gulnaz ; Ullah, Saleem ; Jillani, Syeda Fizzah ; Abbas, Irfan ; Aslam, Muhammad</creator><contributor>Sun, Le</contributor><creatorcontrib>Sadiq Fareed, Mian Muhammad ; Raza, Ali ; Zhao, Na ; Tariq, Aqil ; Younas, Faizan ; Ahmed, Gulnaz ; Ullah, Saleem ; Jillani, Syeda Fizzah ; Abbas, Irfan ; Aslam, Muhammad ; Sun, Le</creatorcontrib><description>A divorce is a legal step taken by married people to end their marriage. It occurs after a couple decides to no longer live together as husband and wife. Globally, the divorce rate has more than doubled from 1970 until 2008, with divorces per 1,000 married people rising from 2.6 to 5.5. Divorce occurs at a rate of 16.9 per 1,000 married women. According to the experts, over half of all marriages ends in divorce or separation in the United States. A novel ensemble learning technique based on advanced machine learning algorithms is proposed in this study. The support vector machine (SVM), passive aggressive classifier, and neural network (MLP) are applied in the context of divorce prediction. A question-based dataset is created by the field specialist. The responses to the questions provide important information about whether a marriage is likely to turn into divorce in the future. The cross-validation is applied in 5 folds, and the performance results of the evaluation metrics are examined. The accuracy score is 100%, and Receiver Operating Characteristic (ROC) curve accuracy score, recall score, the precision score, and the F1 accuracy score are close to 97% confidently. Our findings examined the key indicators for divorce and the factors that are most significant when predicting the divorce.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2022/3687598</identifier><identifier>PMID: 35860635</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Classification ; Computational linguistics ; Coronaviruses ; COVID-19 ; Data mining ; Datasets ; Decision trees ; Divorce ; Ensemble learning ; Language processing ; Learning algorithms ; Machine learning ; Malware ; Marriage ; Medical research ; Natural language interfaces ; Neural networks ; Questions ; Support vector machines</subject><ispartof>Computational intelligence and neuroscience, 2022-07, Vol.2022, p.1-15</ispartof><rights>Copyright © 2022 Mian Muhammad Sadiq Fareed et al.</rights><rights>COPYRIGHT 2022 John Wiley & Sons, Inc.</rights><rights>Copyright © 2022 Mian Muhammad Sadiq Fareed et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Mian Muhammad Sadiq Fareed et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-8ad2079338738c371d834a61a166710d176b057e4b4e66d70634f1721f23b8cf3</citedby><cites>FETCH-LOGICAL-c453t-8ad2079338738c371d834a61a166710d176b057e4b4e66d70634f1721f23b8cf3</cites><orcidid>0000-0003-1196-1248 ; 0000-0002-4434-1726 ; 0000-0002-4751-8574 ; 0000-0002-7269-9725</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293523/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9293523/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><contributor>Sun, Le</contributor><creatorcontrib>Sadiq Fareed, Mian Muhammad</creatorcontrib><creatorcontrib>Raza, Ali</creatorcontrib><creatorcontrib>Zhao, Na</creatorcontrib><creatorcontrib>Tariq, Aqil</creatorcontrib><creatorcontrib>Younas, Faizan</creatorcontrib><creatorcontrib>Ahmed, Gulnaz</creatorcontrib><creatorcontrib>Ullah, Saleem</creatorcontrib><creatorcontrib>Jillani, Syeda Fizzah</creatorcontrib><creatorcontrib>Abbas, Irfan</creatorcontrib><creatorcontrib>Aslam, Muhammad</creatorcontrib><title>Predicting Divorce Prospect Using Ensemble Learning: Support Vector Machine, Linear Model, and Neural Network</title><title>Computational intelligence and neuroscience</title><description>A divorce is a legal step taken by married people to end their marriage. It occurs after a couple decides to no longer live together as husband and wife. Globally, the divorce rate has more than doubled from 1970 until 2008, with divorces per 1,000 married people rising from 2.6 to 5.5. Divorce occurs at a rate of 16.9 per 1,000 married women. According to the experts, over half of all marriages ends in divorce or separation in the United States. A novel ensemble learning technique based on advanced machine learning algorithms is proposed in this study. The support vector machine (SVM), passive aggressive classifier, and neural network (MLP) are applied in the context of divorce prediction. A question-based dataset is created by the field specialist. The responses to the questions provide important information about whether a marriage is likely to turn into divorce in the future. The cross-validation is applied in 5 folds, and the performance results of the evaluation metrics are examined. The accuracy score is 100%, and Receiver Operating Characteristic (ROC) curve accuracy score, recall score, the precision score, and the F1 accuracy score are close to 97% confidently. Our findings examined the key indicators for divorce and the factors that are most significant when predicting the divorce.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Classification</subject><subject>Computational linguistics</subject><subject>Coronaviruses</subject><subject>COVID-19</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Decision trees</subject><subject>Divorce</subject><subject>Ensemble learning</subject><subject>Language processing</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Malware</subject><subject>Marriage</subject><subject>Medical research</subject><subject>Natural language interfaces</subject><subject>Neural networks</subject><subject>Questions</subject><subject>Support vector machines</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU1v1DAQhi0EoqVw4wdY4oLELvVHbCccKlWlBaQFKkG5Wo492bokdrCTVvz7OtpVERy4eMbjR-_M-EXoJSVvKRXimBHGjrmslWjqR-iQlmwtmOKPH3IpDtCznG8IEUoQ9hQdcFFLIrk4RMNlAuft5MMWv_e3MVnAlynmEeyEr_JSPg8ZhrYHvAGTQqm8w9_mcYxpwj8KFRP-bOy1D7DCm3Kaco8O-hU2weEvMCfTlzDdxfTzOXrSmT7Di308QlcX59_PPq43Xz98OjvdrG0l-LSujWNENZzXiteWK-pqXhlJDZVSUeKokm3ZBaq2AimdKqtUHVWMdoy3te34ETrZ6Y5zO4CzEKYyhR6TH0z6raPx-u-X4K_1Nt7qhjVcMF4EXu8FUvw1Q5704LOFvjcB4pw1kw1TQnDZFPTVP-hNnFMo6y0UF4o0TP6htqYH7UMXS1-7iOpTRSnnRIiqUKsdZYsFOUH3MDIlenFbL27rvdsFf7PDy-87c-f_T98DZC6l6w</recordid><startdate>20220711</startdate><enddate>20220711</enddate><creator>Sadiq Fareed, Mian Muhammad</creator><creator>Raza, Ali</creator><creator>Zhao, Na</creator><creator>Tariq, Aqil</creator><creator>Younas, Faizan</creator><creator>Ahmed, Gulnaz</creator><creator>Ullah, Saleem</creator><creator>Jillani, Syeda Fizzah</creator><creator>Abbas, Irfan</creator><creator>Aslam, Muhammad</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1196-1248</orcidid><orcidid>https://orcid.org/0000-0002-4434-1726</orcidid><orcidid>https://orcid.org/0000-0002-4751-8574</orcidid><orcidid>https://orcid.org/0000-0002-7269-9725</orcidid></search><sort><creationdate>20220711</creationdate><title>Predicting Divorce Prospect Using Ensemble Learning: Support Vector Machine, Linear Model, and Neural Network</title><author>Sadiq Fareed, Mian Muhammad ; Raza, Ali ; Zhao, Na ; Tariq, Aqil ; Younas, Faizan ; Ahmed, Gulnaz ; Ullah, Saleem ; Jillani, Syeda Fizzah ; Abbas, Irfan ; Aslam, Muhammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-8ad2079338738c371d834a61a166710d176b057e4b4e66d70634f1721f23b8cf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Classification</topic><topic>Computational linguistics</topic><topic>Coronaviruses</topic><topic>COVID-19</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Decision trees</topic><topic>Divorce</topic><topic>Ensemble learning</topic><topic>Language processing</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Malware</topic><topic>Marriage</topic><topic>Medical research</topic><topic>Natural language interfaces</topic><topic>Neural networks</topic><topic>Questions</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sadiq Fareed, Mian Muhammad</creatorcontrib><creatorcontrib>Raza, Ali</creatorcontrib><creatorcontrib>Zhao, Na</creatorcontrib><creatorcontrib>Tariq, Aqil</creatorcontrib><creatorcontrib>Younas, Faizan</creatorcontrib><creatorcontrib>Ahmed, Gulnaz</creatorcontrib><creatorcontrib>Ullah, Saleem</creatorcontrib><creatorcontrib>Jillani, Syeda Fizzah</creatorcontrib><creatorcontrib>Abbas, Irfan</creatorcontrib><creatorcontrib>Aslam, Muhammad</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sadiq Fareed, Mian Muhammad</au><au>Raza, Ali</au><au>Zhao, Na</au><au>Tariq, Aqil</au><au>Younas, Faizan</au><au>Ahmed, Gulnaz</au><au>Ullah, Saleem</au><au>Jillani, Syeda Fizzah</au><au>Abbas, Irfan</au><au>Aslam, Muhammad</au><au>Sun, Le</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting Divorce Prospect Using Ensemble Learning: Support Vector Machine, Linear Model, and Neural Network</atitle><jtitle>Computational intelligence and neuroscience</jtitle><date>2022-07-11</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>A divorce is a legal step taken by married people to end their marriage. It occurs after a couple decides to no longer live together as husband and wife. Globally, the divorce rate has more than doubled from 1970 until 2008, with divorces per 1,000 married people rising from 2.6 to 5.5. Divorce occurs at a rate of 16.9 per 1,000 married women. According to the experts, over half of all marriages ends in divorce or separation in the United States. A novel ensemble learning technique based on advanced machine learning algorithms is proposed in this study. The support vector machine (SVM), passive aggressive classifier, and neural network (MLP) are applied in the context of divorce prediction. A question-based dataset is created by the field specialist. The responses to the questions provide important information about whether a marriage is likely to turn into divorce in the future. The cross-validation is applied in 5 folds, and the performance results of the evaluation metrics are examined. The accuracy score is 100%, and Receiver Operating Characteristic (ROC) curve accuracy score, recall score, the precision score, and the F1 accuracy score are close to 97% confidently. Our findings examined the key indicators for divorce and the factors that are most significant when predicting the divorce.</abstract><cop>New York</cop><pub>Hindawi</pub><pmid>35860635</pmid><doi>10.1155/2022/3687598</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-1196-1248</orcidid><orcidid>https://orcid.org/0000-0002-4434-1726</orcidid><orcidid>https://orcid.org/0000-0002-4751-8574</orcidid><orcidid>https://orcid.org/0000-0002-7269-9725</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5265 |
ispartof | Computational intelligence and neuroscience, 2022-07, Vol.2022, p.1-15 |
issn | 1687-5265 1687-5273 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9293523 |
source | Wiley Online Library Open Access; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection; PubMed Central Open Access |
subjects | Accuracy Algorithms Artificial intelligence Classification Computational linguistics Coronaviruses COVID-19 Data mining Datasets Decision trees Divorce Ensemble learning Language processing Learning algorithms Machine learning Malware Marriage Medical research Natural language interfaces Neural networks Questions Support vector machines |
title | Predicting Divorce Prospect Using Ensemble Learning: Support Vector Machine, Linear Model, and Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A42%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20Divorce%20Prospect%20Using%20Ensemble%20Learning:%20Support%20Vector%20Machine,%20Linear%20Model,%20and%20Neural%20Network&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Sadiq%20Fareed,%20Mian%20Muhammad&rft.date=2022-07-11&rft.volume=2022&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2022/3687598&rft_dat=%3Cgale_pubme%3EA711330554%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2693570926&rft_id=info:pmid/35860635&rft_galeid=A711330554&rfr_iscdi=true |