Origin and Control of Chemoselectivity in Cytochrome c Catalyzed Carbene Transfer into Si–H and N–H bonds

A cytochrome c heme protein was recently engineered to catalyze the formation of carbon–silicon bonds via carbene insertion into Si–H bonds, a reaction that was not previously known to be catalyzed by a protein. High chemoselectivity toward C–Si bond formation over competing C–N bond formation was a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2021-05, Vol.143 (18), p.7114-7123
Hauptverfasser: Garcia-Borràs, Marc, Kan, S. B. Jennifer, Lewis, Russell D, Tang, Allison, Jimenez-Osés, Gonzalo, Arnold, Frances H, Houk, K. N
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7123
container_issue 18
container_start_page 7114
container_title Journal of the American Chemical Society
container_volume 143
creator Garcia-Borràs, Marc
Kan, S. B. Jennifer
Lewis, Russell D
Tang, Allison
Jimenez-Osés, Gonzalo
Arnold, Frances H
Houk, K. N
description A cytochrome c heme protein was recently engineered to catalyze the formation of carbon–silicon bonds via carbene insertion into Si–H bonds, a reaction that was not previously known to be catalyzed by a protein. High chemoselectivity toward C–Si bond formation over competing C–N bond formation was achieved, although this trait was not screened for during directed evolution. Using computational and experimental tools, we now establish that activity and chemoselectivity are modulated by conformational dynamics of a protein loop that covers the substrate access to the iron–carbene active species. Mutagenesis of residues computationally predicted to control the loop conformation altered the protein’s chemoselectivity from preferred silylation to preferred amination of a substrate containing both N–H and Si–H functionalities. We demonstrate that information on protein structure and conformational dynamics, combined with knowledge of mechanism, leads to understanding of how non-natural and selective chemical transformations can be introduced into the biological world.
doi_str_mv 10.1021/jacs.1c02146
format Article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9292473</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c164450741</sourcerecordid><originalsourceid>FETCH-LOGICAL-a417t-2c1baf5ecc9e71cbb5a789da0f1fee29c9bedfadb5938697884af61735dbea443</originalsourceid><addsrcrecordid>eNptkMtKxDAUhoMoOl52riVLF1aT9JJmI0jxBqILdV1O0hOnQ9tIUoVx5Tv4hj6JGUdFwVVOyPd_4fyE7HJ2yJngRzMw4ZCbOGbFCpnwXLAk56JYJRPGmEhkWaQbZDOEWbxmouTrZCNNFVNKygnpb3z70A4UhoZWbhi966iztJpi7wJ2aMb2uR3nNCLVfHRm6l2P1NAKRujmLxhT4DUOSO88DMGij-jo6G37_vp28am9_py0G5qwTdYsdAF3vs4tcn92elddJFc355fVyVUCGZdjIgzXYHM0RqHkRuscZKkaYJZbRKGM0thYaHSu0rJQsiwzsAWXad5ohCxLt8jx0vv4pHtsDMbFoKsffduDn9cO2vrvy9BO6wf3XCuhRCbTKDhYCox3IXi0P1nO6kXt9aL2-qv2iO_9_u8H_u45AvtLYJGauSc_xPX_d30AufeQvg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Origin and Control of Chemoselectivity in Cytochrome c Catalyzed Carbene Transfer into Si–H and N–H bonds</title><source>ACS Publications</source><creator>Garcia-Borràs, Marc ; Kan, S. B. Jennifer ; Lewis, Russell D ; Tang, Allison ; Jimenez-Osés, Gonzalo ; Arnold, Frances H ; Houk, K. N</creator><creatorcontrib>Garcia-Borràs, Marc ; Kan, S. B. Jennifer ; Lewis, Russell D ; Tang, Allison ; Jimenez-Osés, Gonzalo ; Arnold, Frances H ; Houk, K. N</creatorcontrib><description>A cytochrome c heme protein was recently engineered to catalyze the formation of carbon–silicon bonds via carbene insertion into Si–H bonds, a reaction that was not previously known to be catalyzed by a protein. High chemoselectivity toward C–Si bond formation over competing C–N bond formation was achieved, although this trait was not screened for during directed evolution. Using computational and experimental tools, we now establish that activity and chemoselectivity are modulated by conformational dynamics of a protein loop that covers the substrate access to the iron–carbene active species. Mutagenesis of residues computationally predicted to control the loop conformation altered the protein’s chemoselectivity from preferred silylation to preferred amination of a substrate containing both N–H and Si–H functionalities. We demonstrate that information on protein structure and conformational dynamics, combined with knowledge of mechanism, leads to understanding of how non-natural and selective chemical transformations can be introduced into the biological world.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c02146</identifier><identifier>PMID: 33909977</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2021-05, Vol.143 (18), p.7114-7123</ispartof><rights>2021 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a417t-2c1baf5ecc9e71cbb5a789da0f1fee29c9bedfadb5938697884af61735dbea443</citedby><cites>FETCH-LOGICAL-a417t-2c1baf5ecc9e71cbb5a789da0f1fee29c9bedfadb5938697884af61735dbea443</cites><orcidid>0000-0002-5776-7347 ; 0000-0001-9458-1114 ; 0000-0002-8387-5261 ; 0000-0001-6371-8042 ; 0000-0002-4027-364X ; 0000-0003-0105-4337</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c02146$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c02146$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/33909977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garcia-Borràs, Marc</creatorcontrib><creatorcontrib>Kan, S. B. Jennifer</creatorcontrib><creatorcontrib>Lewis, Russell D</creatorcontrib><creatorcontrib>Tang, Allison</creatorcontrib><creatorcontrib>Jimenez-Osés, Gonzalo</creatorcontrib><creatorcontrib>Arnold, Frances H</creatorcontrib><creatorcontrib>Houk, K. N</creatorcontrib><title>Origin and Control of Chemoselectivity in Cytochrome c Catalyzed Carbene Transfer into Si–H and N–H bonds</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>A cytochrome c heme protein was recently engineered to catalyze the formation of carbon–silicon bonds via carbene insertion into Si–H bonds, a reaction that was not previously known to be catalyzed by a protein. High chemoselectivity toward C–Si bond formation over competing C–N bond formation was achieved, although this trait was not screened for during directed evolution. Using computational and experimental tools, we now establish that activity and chemoselectivity are modulated by conformational dynamics of a protein loop that covers the substrate access to the iron–carbene active species. Mutagenesis of residues computationally predicted to control the loop conformation altered the protein’s chemoselectivity from preferred silylation to preferred amination of a substrate containing both N–H and Si–H functionalities. We demonstrate that information on protein structure and conformational dynamics, combined with knowledge of mechanism, leads to understanding of how non-natural and selective chemical transformations can be introduced into the biological world.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNptkMtKxDAUhoMoOl52riVLF1aT9JJmI0jxBqILdV1O0hOnQ9tIUoVx5Tv4hj6JGUdFwVVOyPd_4fyE7HJ2yJngRzMw4ZCbOGbFCpnwXLAk56JYJRPGmEhkWaQbZDOEWbxmouTrZCNNFVNKygnpb3z70A4UhoZWbhi966iztJpi7wJ2aMb2uR3nNCLVfHRm6l2P1NAKRujmLxhT4DUOSO88DMGij-jo6G37_vp28am9_py0G5qwTdYsdAF3vs4tcn92elddJFc355fVyVUCGZdjIgzXYHM0RqHkRuscZKkaYJZbRKGM0thYaHSu0rJQsiwzsAWXad5ohCxLt8jx0vv4pHtsDMbFoKsffduDn9cO2vrvy9BO6wf3XCuhRCbTKDhYCox3IXi0P1nO6kXt9aL2-qv2iO_9_u8H_u45AvtLYJGauSc_xPX_d30AufeQvg</recordid><startdate>20210512</startdate><enddate>20210512</enddate><creator>Garcia-Borràs, Marc</creator><creator>Kan, S. B. Jennifer</creator><creator>Lewis, Russell D</creator><creator>Tang, Allison</creator><creator>Jimenez-Osés, Gonzalo</creator><creator>Arnold, Frances H</creator><creator>Houk, K. N</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5776-7347</orcidid><orcidid>https://orcid.org/0000-0001-9458-1114</orcidid><orcidid>https://orcid.org/0000-0002-8387-5261</orcidid><orcidid>https://orcid.org/0000-0001-6371-8042</orcidid><orcidid>https://orcid.org/0000-0002-4027-364X</orcidid><orcidid>https://orcid.org/0000-0003-0105-4337</orcidid></search><sort><creationdate>20210512</creationdate><title>Origin and Control of Chemoselectivity in Cytochrome c Catalyzed Carbene Transfer into Si–H and N–H bonds</title><author>Garcia-Borràs, Marc ; Kan, S. B. Jennifer ; Lewis, Russell D ; Tang, Allison ; Jimenez-Osés, Gonzalo ; Arnold, Frances H ; Houk, K. N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a417t-2c1baf5ecc9e71cbb5a789da0f1fee29c9bedfadb5938697884af61735dbea443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia-Borràs, Marc</creatorcontrib><creatorcontrib>Kan, S. B. Jennifer</creatorcontrib><creatorcontrib>Lewis, Russell D</creatorcontrib><creatorcontrib>Tang, Allison</creatorcontrib><creatorcontrib>Jimenez-Osés, Gonzalo</creatorcontrib><creatorcontrib>Arnold, Frances H</creatorcontrib><creatorcontrib>Houk, K. N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garcia-Borràs, Marc</au><au>Kan, S. B. Jennifer</au><au>Lewis, Russell D</au><au>Tang, Allison</au><au>Jimenez-Osés, Gonzalo</au><au>Arnold, Frances H</au><au>Houk, K. N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Origin and Control of Chemoselectivity in Cytochrome c Catalyzed Carbene Transfer into Si–H and N–H bonds</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2021-05-12</date><risdate>2021</risdate><volume>143</volume><issue>18</issue><spage>7114</spage><epage>7123</epage><pages>7114-7123</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>A cytochrome c heme protein was recently engineered to catalyze the formation of carbon–silicon bonds via carbene insertion into Si–H bonds, a reaction that was not previously known to be catalyzed by a protein. High chemoselectivity toward C–Si bond formation over competing C–N bond formation was achieved, although this trait was not screened for during directed evolution. Using computational and experimental tools, we now establish that activity and chemoselectivity are modulated by conformational dynamics of a protein loop that covers the substrate access to the iron–carbene active species. Mutagenesis of residues computationally predicted to control the loop conformation altered the protein’s chemoselectivity from preferred silylation to preferred amination of a substrate containing both N–H and Si–H functionalities. We demonstrate that information on protein structure and conformational dynamics, combined with knowledge of mechanism, leads to understanding of how non-natural and selective chemical transformations can be introduced into the biological world.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>33909977</pmid><doi>10.1021/jacs.1c02146</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-5776-7347</orcidid><orcidid>https://orcid.org/0000-0001-9458-1114</orcidid><orcidid>https://orcid.org/0000-0002-8387-5261</orcidid><orcidid>https://orcid.org/0000-0001-6371-8042</orcidid><orcidid>https://orcid.org/0000-0002-4027-364X</orcidid><orcidid>https://orcid.org/0000-0003-0105-4337</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2021-05, Vol.143 (18), p.7114-7123
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9292473
source ACS Publications
title Origin and Control of Chemoselectivity in Cytochrome c Catalyzed Carbene Transfer into Si–H and N–H bonds
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T18%3A37%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Origin%20and%20Control%20of%20Chemoselectivity%20in%20Cytochrome%20c%20Catalyzed%20Carbene%20Transfer%20into%20Si%E2%80%93H%20and%20N%E2%80%93H%20bonds&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Garcia-Borra%CC%80s,%20Marc&rft.date=2021-05-12&rft.volume=143&rft.issue=18&rft.spage=7114&rft.epage=7123&rft.pages=7114-7123&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c02146&rft_dat=%3Cacs_pubme%3Ec164450741%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/33909977&rfr_iscdi=true