Conformational variability in proteins bound to single‐stranded DNA: A new benchmark for new docking perspectives

We explored the Protein Data Bank (PDB) to collect protein–ssDNA structures and create a multi‐conformational docking benchmark including both bound and unbound protein structures. Due to ssDNA high flexibility when not bound, no ssDNA unbound structure is included in the benchmark. For the 91 seque...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2022-03, Vol.90 (3), p.625-631
Hauptverfasser: Mias‐Lucquin, Dominique, Chauvot de Beauchene, Isaure
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 631
container_issue 3
container_start_page 625
container_title Proteins, structure, function, and bioinformatics
container_volume 90
creator Mias‐Lucquin, Dominique
Chauvot de Beauchene, Isaure
description We explored the Protein Data Bank (PDB) to collect protein–ssDNA structures and create a multi‐conformational docking benchmark including both bound and unbound protein structures. Due to ssDNA high flexibility when not bound, no ssDNA unbound structure is included in the benchmark. For the 91 sequence‐identity groups identified as bound–unbound structures of the same protein, we studied the conformational changes in the protein induced by the ssDNA binding. Moreover, based on several bound or unbound protein structures in some groups, we also assessed the intrinsic conformational variability in either bound or unbound conditions and compared it to the supposedly binding‐induced modifications. To illustrate a use case of this benchmark, we performed docking experiments using ATTRACT docking software. This benchmark is, to our knowledge, the first one made to peruse available structures of ssDNA–protein interactions to such an extent, aiming to improve computational docking tools dedicated to this kind of molecular interactions.
doi_str_mv 10.1002/prot.26258
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9292434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580024529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4828-df91b2e3b6e7541c3eee9682c9d6573f52f8d9c64c4a79d8b5a44c4a3e6d180e3</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EokNhwwMgS2wAKcV_SRwWSKMpUKQRRaisLce56bjN2MFOpppdH4Fn5ElwmlJBF6xsXZ97fO0PoeeUHFFC2Ns--OGIFSyXD9CCkqrMCOXiIVoQKcuM5zI_QE9ivCCEFBUvHqMDLgpacl4sUFx51_qw1YP1Tnd4p4PVte3ssMfW4UkN1kVc-9E1ePA4Wnfewa_rn3EI2jXQ4OMvy3d4iR1c4Rqc2Wx1uMTJeVNpvLlMHbiHEHswg91BfIoetbqL8Ox2PUTfP344W51k69NPn1fLdWaEZDJr2orWDHhdQJkLajgAVIVkpmqKvORtzlrZVKYQRuiyamSdazHtORQNlQT4IXo_e_ux3kJjwKWRO9UHm0bcK6-t-vfE2Y069ztVsYoJLpLg9SzY3Gs7Wa7VVCNcMpoTsaOJfXV7WfA_RoiD2tpooOu0Az9GldJJWYmcVQl9eQ-98GNIv5-olCKjUlKeqDczZYKPMUB7NwElaspdTeHcdMgEv_j7qXfon6ATQGfgynaw_49Kff12ejZLfwMkQbsk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625218813</pqid></control><display><type>article</type><title>Conformational variability in proteins bound to single‐stranded DNA: A new benchmark for new docking perspectives</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Mias‐Lucquin, Dominique ; Chauvot de Beauchene, Isaure</creator><creatorcontrib>Mias‐Lucquin, Dominique ; Chauvot de Beauchene, Isaure</creatorcontrib><description>We explored the Protein Data Bank (PDB) to collect protein–ssDNA structures and create a multi‐conformational docking benchmark including both bound and unbound protein structures. Due to ssDNA high flexibility when not bound, no ssDNA unbound structure is included in the benchmark. For the 91 sequence‐identity groups identified as bound–unbound structures of the same protein, we studied the conformational changes in the protein induced by the ssDNA binding. Moreover, based on several bound or unbound protein structures in some groups, we also assessed the intrinsic conformational variability in either bound or unbound conditions and compared it to the supposedly binding‐induced modifications. To illustrate a use case of this benchmark, we performed docking experiments using ATTRACT docking software. This benchmark is, to our knowledge, the first one made to peruse available structures of ssDNA–protein interactions to such an extent, aiming to improve computational docking tools dedicated to this kind of molecular interactions.</description><identifier>ISSN: 0887-3585</identifier><identifier>ISSN: 1097-0134</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.26258</identifier><identifier>PMID: 34617336</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>benchmark ; Benchmarking ; Benchmarks ; Binding ; Biochemistry, Molecular Biology ; Bioinformatics ; Computational Biology ; Computer applications ; Computer Science ; Databases, Protein ; DNA, Single-Stranded - chemistry ; Docking ; Group theory ; Life Sciences ; Molecular Conformation ; molecular docking analysis ; Molecular Docking Simulation ; Molecular interactions ; Protein Binding ; Protein Conformation ; Protein interaction ; Protein structure ; Proteins ; Proteins - chemistry ; single‐stranded DNA ; single‐stranded DNA‐binding protein ; Software ; Structural Biology ; Variability</subject><ispartof>Proteins, structure, function, and bioinformatics, 2022-03, Vol.90 (3), p.625-631</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC.</rights><rights>2021 The Authors. Proteins: Structure, Function, and Bioinformatics published by Wiley Periodicals LLC.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4828-df91b2e3b6e7541c3eee9682c9d6573f52f8d9c64c4a79d8b5a44c4a3e6d180e3</citedby><cites>FETCH-LOGICAL-c4828-df91b2e3b6e7541c3eee9682c9d6573f52f8d9c64c4a79d8b5a44c4a3e6d180e3</cites><orcidid>0000-0002-7035-3042 ; 0000-0002-9967-937X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.26258$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.26258$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34617336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03821504$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mias‐Lucquin, Dominique</creatorcontrib><creatorcontrib>Chauvot de Beauchene, Isaure</creatorcontrib><title>Conformational variability in proteins bound to single‐stranded DNA: A new benchmark for new docking perspectives</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>We explored the Protein Data Bank (PDB) to collect protein–ssDNA structures and create a multi‐conformational docking benchmark including both bound and unbound protein structures. Due to ssDNA high flexibility when not bound, no ssDNA unbound structure is included in the benchmark. For the 91 sequence‐identity groups identified as bound–unbound structures of the same protein, we studied the conformational changes in the protein induced by the ssDNA binding. Moreover, based on several bound or unbound protein structures in some groups, we also assessed the intrinsic conformational variability in either bound or unbound conditions and compared it to the supposedly binding‐induced modifications. To illustrate a use case of this benchmark, we performed docking experiments using ATTRACT docking software. This benchmark is, to our knowledge, the first one made to peruse available structures of ssDNA–protein interactions to such an extent, aiming to improve computational docking tools dedicated to this kind of molecular interactions.</description><subject>benchmark</subject><subject>Benchmarking</subject><subject>Benchmarks</subject><subject>Binding</subject><subject>Biochemistry, Molecular Biology</subject><subject>Bioinformatics</subject><subject>Computational Biology</subject><subject>Computer applications</subject><subject>Computer Science</subject><subject>Databases, Protein</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>Docking</subject><subject>Group theory</subject><subject>Life Sciences</subject><subject>Molecular Conformation</subject><subject>molecular docking analysis</subject><subject>Molecular Docking Simulation</subject><subject>Molecular interactions</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein interaction</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>single‐stranded DNA</subject><subject>single‐stranded DNA‐binding protein</subject><subject>Software</subject><subject>Structural Biology</subject><subject>Variability</subject><issn>0887-3585</issn><issn>1097-0134</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAURi0EokNhwwMgS2wAKcV_SRwWSKMpUKQRRaisLce56bjN2MFOpppdH4Fn5ElwmlJBF6xsXZ97fO0PoeeUHFFC2Ns--OGIFSyXD9CCkqrMCOXiIVoQKcuM5zI_QE9ivCCEFBUvHqMDLgpacl4sUFx51_qw1YP1Tnd4p4PVte3ssMfW4UkN1kVc-9E1ePA4Wnfewa_rn3EI2jXQ4OMvy3d4iR1c4Rqc2Wx1uMTJeVNpvLlMHbiHEHswg91BfIoetbqL8Ox2PUTfP344W51k69NPn1fLdWaEZDJr2orWDHhdQJkLajgAVIVkpmqKvORtzlrZVKYQRuiyamSdazHtORQNlQT4IXo_e_ux3kJjwKWRO9UHm0bcK6-t-vfE2Y069ztVsYoJLpLg9SzY3Gs7Wa7VVCNcMpoTsaOJfXV7WfA_RoiD2tpooOu0Az9GldJJWYmcVQl9eQ-98GNIv5-olCKjUlKeqDczZYKPMUB7NwElaspdTeHcdMgEv_j7qXfon6ATQGfgynaw_49Kff12ejZLfwMkQbsk</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Mias‐Lucquin, Dominique</creator><creator>Chauvot de Beauchene, Isaure</creator><general>John Wiley &amp; Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7035-3042</orcidid><orcidid>https://orcid.org/0000-0002-9967-937X</orcidid></search><sort><creationdate>202203</creationdate><title>Conformational variability in proteins bound to single‐stranded DNA: A new benchmark for new docking perspectives</title><author>Mias‐Lucquin, Dominique ; Chauvot de Beauchene, Isaure</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4828-df91b2e3b6e7541c3eee9682c9d6573f52f8d9c64c4a79d8b5a44c4a3e6d180e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>benchmark</topic><topic>Benchmarking</topic><topic>Benchmarks</topic><topic>Binding</topic><topic>Biochemistry, Molecular Biology</topic><topic>Bioinformatics</topic><topic>Computational Biology</topic><topic>Computer applications</topic><topic>Computer Science</topic><topic>Databases, Protein</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>Docking</topic><topic>Group theory</topic><topic>Life Sciences</topic><topic>Molecular Conformation</topic><topic>molecular docking analysis</topic><topic>Molecular Docking Simulation</topic><topic>Molecular interactions</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein interaction</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>single‐stranded DNA</topic><topic>single‐stranded DNA‐binding protein</topic><topic>Software</topic><topic>Structural Biology</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mias‐Lucquin, Dominique</creatorcontrib><creatorcontrib>Chauvot de Beauchene, Isaure</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mias‐Lucquin, Dominique</au><au>Chauvot de Beauchene, Isaure</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformational variability in proteins bound to single‐stranded DNA: A new benchmark for new docking perspectives</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2022-03</date><risdate>2022</risdate><volume>90</volume><issue>3</issue><spage>625</spage><epage>631</epage><pages>625-631</pages><issn>0887-3585</issn><issn>1097-0134</issn><eissn>1097-0134</eissn><abstract>We explored the Protein Data Bank (PDB) to collect protein–ssDNA structures and create a multi‐conformational docking benchmark including both bound and unbound protein structures. Due to ssDNA high flexibility when not bound, no ssDNA unbound structure is included in the benchmark. For the 91 sequence‐identity groups identified as bound–unbound structures of the same protein, we studied the conformational changes in the protein induced by the ssDNA binding. Moreover, based on several bound or unbound protein structures in some groups, we also assessed the intrinsic conformational variability in either bound or unbound conditions and compared it to the supposedly binding‐induced modifications. To illustrate a use case of this benchmark, we performed docking experiments using ATTRACT docking software. This benchmark is, to our knowledge, the first one made to peruse available structures of ssDNA–protein interactions to such an extent, aiming to improve computational docking tools dedicated to this kind of molecular interactions.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><pmid>34617336</pmid><doi>10.1002/prot.26258</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7035-3042</orcidid><orcidid>https://orcid.org/0000-0002-9967-937X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0887-3585
ispartof Proteins, structure, function, and bioinformatics, 2022-03, Vol.90 (3), p.625-631
issn 0887-3585
1097-0134
1097-0134
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9292434
source MEDLINE; Access via Wiley Online Library
subjects benchmark
Benchmarking
Benchmarks
Binding
Biochemistry, Molecular Biology
Bioinformatics
Computational Biology
Computer applications
Computer Science
Databases, Protein
DNA, Single-Stranded - chemistry
Docking
Group theory
Life Sciences
Molecular Conformation
molecular docking analysis
Molecular Docking Simulation
Molecular interactions
Protein Binding
Protein Conformation
Protein interaction
Protein structure
Proteins
Proteins - chemistry
single‐stranded DNA
single‐stranded DNA‐binding protein
Software
Structural Biology
Variability
title Conformational variability in proteins bound to single‐stranded DNA: A new benchmark for new docking perspectives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T15%3A09%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformational%20variability%20in%20proteins%20bound%20to%20single%E2%80%90stranded%20DNA:%20A%20new%20benchmark%20for%20new%20docking%20perspectives&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Mias%E2%80%90Lucquin,%20Dominique&rft.date=2022-03&rft.volume=90&rft.issue=3&rft.spage=625&rft.epage=631&rft.pages=625-631&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.26258&rft_dat=%3Cproquest_pubme%3E2580024529%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625218813&rft_id=info:pmid/34617336&rfr_iscdi=true