Conformational variability in proteins bound to single‐stranded DNA: A new benchmark for new docking perspectives
We explored the Protein Data Bank (PDB) to collect protein–ssDNA structures and create a multi‐conformational docking benchmark including both bound and unbound protein structures. Due to ssDNA high flexibility when not bound, no ssDNA unbound structure is included in the benchmark. For the 91 seque...
Gespeichert in:
Veröffentlicht in: | Proteins, structure, function, and bioinformatics structure, function, and bioinformatics, 2022-03, Vol.90 (3), p.625-631 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 631 |
---|---|
container_issue | 3 |
container_start_page | 625 |
container_title | Proteins, structure, function, and bioinformatics |
container_volume | 90 |
creator | Mias‐Lucquin, Dominique Chauvot de Beauchene, Isaure |
description | We explored the Protein Data Bank (PDB) to collect protein–ssDNA structures and create a multi‐conformational docking benchmark including both bound and unbound protein structures. Due to ssDNA high flexibility when not bound, no ssDNA unbound structure is included in the benchmark. For the 91 sequence‐identity groups identified as bound–unbound structures of the same protein, we studied the conformational changes in the protein induced by the ssDNA binding. Moreover, based on several bound or unbound protein structures in some groups, we also assessed the intrinsic conformational variability in either bound or unbound conditions and compared it to the supposedly binding‐induced modifications. To illustrate a use case of this benchmark, we performed docking experiments using ATTRACT docking software. This benchmark is, to our knowledge, the first one made to peruse available structures of ssDNA–protein interactions to such an extent, aiming to improve computational docking tools dedicated to this kind of molecular interactions. |
doi_str_mv | 10.1002/prot.26258 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9292434</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2580024529</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4828-df91b2e3b6e7541c3eee9682c9d6573f52f8d9c64c4a79d8b5a44c4a3e6d180e3</originalsourceid><addsrcrecordid>eNp9kc1u1DAURi0EokNhwwMgS2wAKcV_SRwWSKMpUKQRRaisLce56bjN2MFOpppdH4Fn5ElwmlJBF6xsXZ97fO0PoeeUHFFC2Ns--OGIFSyXD9CCkqrMCOXiIVoQKcuM5zI_QE9ivCCEFBUvHqMDLgpacl4sUFx51_qw1YP1Tnd4p4PVte3ssMfW4UkN1kVc-9E1ePA4Wnfewa_rn3EI2jXQ4OMvy3d4iR1c4Rqc2Wx1uMTJeVNpvLlMHbiHEHswg91BfIoetbqL8Ox2PUTfP344W51k69NPn1fLdWaEZDJr2orWDHhdQJkLajgAVIVkpmqKvORtzlrZVKYQRuiyamSdazHtORQNlQT4IXo_e_ux3kJjwKWRO9UHm0bcK6-t-vfE2Y069ztVsYoJLpLg9SzY3Gs7Wa7VVCNcMpoTsaOJfXV7WfA_RoiD2tpooOu0Az9GldJJWYmcVQl9eQ-98GNIv5-olCKjUlKeqDczZYKPMUB7NwElaspdTeHcdMgEv_j7qXfon6ATQGfgynaw_49Kff12ejZLfwMkQbsk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2625218813</pqid></control><display><type>article</type><title>Conformational variability in proteins bound to single‐stranded DNA: A new benchmark for new docking perspectives</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Mias‐Lucquin, Dominique ; Chauvot de Beauchene, Isaure</creator><creatorcontrib>Mias‐Lucquin, Dominique ; Chauvot de Beauchene, Isaure</creatorcontrib><description>We explored the Protein Data Bank (PDB) to collect protein–ssDNA structures and create a multi‐conformational docking benchmark including both bound and unbound protein structures. Due to ssDNA high flexibility when not bound, no ssDNA unbound structure is included in the benchmark. For the 91 sequence‐identity groups identified as bound–unbound structures of the same protein, we studied the conformational changes in the protein induced by the ssDNA binding. Moreover, based on several bound or unbound protein structures in some groups, we also assessed the intrinsic conformational variability in either bound or unbound conditions and compared it to the supposedly binding‐induced modifications. To illustrate a use case of this benchmark, we performed docking experiments using ATTRACT docking software. This benchmark is, to our knowledge, the first one made to peruse available structures of ssDNA–protein interactions to such an extent, aiming to improve computational docking tools dedicated to this kind of molecular interactions.</description><identifier>ISSN: 0887-3585</identifier><identifier>ISSN: 1097-0134</identifier><identifier>EISSN: 1097-0134</identifier><identifier>DOI: 10.1002/prot.26258</identifier><identifier>PMID: 34617336</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>benchmark ; Benchmarking ; Benchmarks ; Binding ; Biochemistry, Molecular Biology ; Bioinformatics ; Computational Biology ; Computer applications ; Computer Science ; Databases, Protein ; DNA, Single-Stranded - chemistry ; Docking ; Group theory ; Life Sciences ; Molecular Conformation ; molecular docking analysis ; Molecular Docking Simulation ; Molecular interactions ; Protein Binding ; Protein Conformation ; Protein interaction ; Protein structure ; Proteins ; Proteins - chemistry ; single‐stranded DNA ; single‐stranded DNA‐binding protein ; Software ; Structural Biology ; Variability</subject><ispartof>Proteins, structure, function, and bioinformatics, 2022-03, Vol.90 (3), p.625-631</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC.</rights><rights>2021 The Authors. Proteins: Structure, Function, and Bioinformatics published by Wiley Periodicals LLC.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4828-df91b2e3b6e7541c3eee9682c9d6573f52f8d9c64c4a79d8b5a44c4a3e6d180e3</citedby><cites>FETCH-LOGICAL-c4828-df91b2e3b6e7541c3eee9682c9d6573f52f8d9c64c4a79d8b5a44c4a3e6d180e3</cites><orcidid>0000-0002-7035-3042 ; 0000-0002-9967-937X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fprot.26258$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fprot.26258$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,315,782,786,887,1419,27931,27932,45581,45582</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34617336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03821504$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Mias‐Lucquin, Dominique</creatorcontrib><creatorcontrib>Chauvot de Beauchene, Isaure</creatorcontrib><title>Conformational variability in proteins bound to single‐stranded DNA: A new benchmark for new docking perspectives</title><title>Proteins, structure, function, and bioinformatics</title><addtitle>Proteins</addtitle><description>We explored the Protein Data Bank (PDB) to collect protein–ssDNA structures and create a multi‐conformational docking benchmark including both bound and unbound protein structures. Due to ssDNA high flexibility when not bound, no ssDNA unbound structure is included in the benchmark. For the 91 sequence‐identity groups identified as bound–unbound structures of the same protein, we studied the conformational changes in the protein induced by the ssDNA binding. Moreover, based on several bound or unbound protein structures in some groups, we also assessed the intrinsic conformational variability in either bound or unbound conditions and compared it to the supposedly binding‐induced modifications. To illustrate a use case of this benchmark, we performed docking experiments using ATTRACT docking software. This benchmark is, to our knowledge, the first one made to peruse available structures of ssDNA–protein interactions to such an extent, aiming to improve computational docking tools dedicated to this kind of molecular interactions.</description><subject>benchmark</subject><subject>Benchmarking</subject><subject>Benchmarks</subject><subject>Binding</subject><subject>Biochemistry, Molecular Biology</subject><subject>Bioinformatics</subject><subject>Computational Biology</subject><subject>Computer applications</subject><subject>Computer Science</subject><subject>Databases, Protein</subject><subject>DNA, Single-Stranded - chemistry</subject><subject>Docking</subject><subject>Group theory</subject><subject>Life Sciences</subject><subject>Molecular Conformation</subject><subject>molecular docking analysis</subject><subject>Molecular Docking Simulation</subject><subject>Molecular interactions</subject><subject>Protein Binding</subject><subject>Protein Conformation</subject><subject>Protein interaction</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Proteins - chemistry</subject><subject>single‐stranded DNA</subject><subject>single‐stranded DNA‐binding protein</subject><subject>Software</subject><subject>Structural Biology</subject><subject>Variability</subject><issn>0887-3585</issn><issn>1097-0134</issn><issn>1097-0134</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc1u1DAURi0EokNhwwMgS2wAKcV_SRwWSKMpUKQRRaisLce56bjN2MFOpppdH4Fn5ElwmlJBF6xsXZ97fO0PoeeUHFFC2Ns--OGIFSyXD9CCkqrMCOXiIVoQKcuM5zI_QE9ivCCEFBUvHqMDLgpacl4sUFx51_qw1YP1Tnd4p4PVte3ssMfW4UkN1kVc-9E1ePA4Wnfewa_rn3EI2jXQ4OMvy3d4iR1c4Rqc2Wx1uMTJeVNpvLlMHbiHEHswg91BfIoetbqL8Ox2PUTfP344W51k69NPn1fLdWaEZDJr2orWDHhdQJkLajgAVIVkpmqKvORtzlrZVKYQRuiyamSdazHtORQNlQT4IXo_e_ux3kJjwKWRO9UHm0bcK6-t-vfE2Y069ztVsYoJLpLg9SzY3Gs7Wa7VVCNcMpoTsaOJfXV7WfA_RoiD2tpooOu0Az9GldJJWYmcVQl9eQ-98GNIv5-olCKjUlKeqDczZYKPMUB7NwElaspdTeHcdMgEv_j7qXfon6ATQGfgynaw_49Kff12ejZLfwMkQbsk</recordid><startdate>202203</startdate><enddate>202203</enddate><creator>Mias‐Lucquin, Dominique</creator><creator>Chauvot de Beauchene, Isaure</creator><general>John Wiley & Sons, Inc</general><general>Wiley Subscription Services, Inc</general><general>Wiley</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-7035-3042</orcidid><orcidid>https://orcid.org/0000-0002-9967-937X</orcidid></search><sort><creationdate>202203</creationdate><title>Conformational variability in proteins bound to single‐stranded DNA: A new benchmark for new docking perspectives</title><author>Mias‐Lucquin, Dominique ; Chauvot de Beauchene, Isaure</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4828-df91b2e3b6e7541c3eee9682c9d6573f52f8d9c64c4a79d8b5a44c4a3e6d180e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>benchmark</topic><topic>Benchmarking</topic><topic>Benchmarks</topic><topic>Binding</topic><topic>Biochemistry, Molecular Biology</topic><topic>Bioinformatics</topic><topic>Computational Biology</topic><topic>Computer applications</topic><topic>Computer Science</topic><topic>Databases, Protein</topic><topic>DNA, Single-Stranded - chemistry</topic><topic>Docking</topic><topic>Group theory</topic><topic>Life Sciences</topic><topic>Molecular Conformation</topic><topic>molecular docking analysis</topic><topic>Molecular Docking Simulation</topic><topic>Molecular interactions</topic><topic>Protein Binding</topic><topic>Protein Conformation</topic><topic>Protein interaction</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Proteins - chemistry</topic><topic>single‐stranded DNA</topic><topic>single‐stranded DNA‐binding protein</topic><topic>Software</topic><topic>Structural Biology</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mias‐Lucquin, Dominique</creatorcontrib><creatorcontrib>Chauvot de Beauchene, Isaure</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proteins, structure, function, and bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mias‐Lucquin, Dominique</au><au>Chauvot de Beauchene, Isaure</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conformational variability in proteins bound to single‐stranded DNA: A new benchmark for new docking perspectives</atitle><jtitle>Proteins, structure, function, and bioinformatics</jtitle><addtitle>Proteins</addtitle><date>2022-03</date><risdate>2022</risdate><volume>90</volume><issue>3</issue><spage>625</spage><epage>631</epage><pages>625-631</pages><issn>0887-3585</issn><issn>1097-0134</issn><eissn>1097-0134</eissn><abstract>We explored the Protein Data Bank (PDB) to collect protein–ssDNA structures and create a multi‐conformational docking benchmark including both bound and unbound protein structures. Due to ssDNA high flexibility when not bound, no ssDNA unbound structure is included in the benchmark. For the 91 sequence‐identity groups identified as bound–unbound structures of the same protein, we studied the conformational changes in the protein induced by the ssDNA binding. Moreover, based on several bound or unbound protein structures in some groups, we also assessed the intrinsic conformational variability in either bound or unbound conditions and compared it to the supposedly binding‐induced modifications. To illustrate a use case of this benchmark, we performed docking experiments using ATTRACT docking software. This benchmark is, to our knowledge, the first one made to peruse available structures of ssDNA–protein interactions to such an extent, aiming to improve computational docking tools dedicated to this kind of molecular interactions.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><pmid>34617336</pmid><doi>10.1002/prot.26258</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-7035-3042</orcidid><orcidid>https://orcid.org/0000-0002-9967-937X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0887-3585 |
ispartof | Proteins, structure, function, and bioinformatics, 2022-03, Vol.90 (3), p.625-631 |
issn | 0887-3585 1097-0134 1097-0134 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9292434 |
source | MEDLINE; Access via Wiley Online Library |
subjects | benchmark Benchmarking Benchmarks Binding Biochemistry, Molecular Biology Bioinformatics Computational Biology Computer applications Computer Science Databases, Protein DNA, Single-Stranded - chemistry Docking Group theory Life Sciences Molecular Conformation molecular docking analysis Molecular Docking Simulation Molecular interactions Protein Binding Protein Conformation Protein interaction Protein structure Proteins Proteins - chemistry single‐stranded DNA single‐stranded DNA‐binding protein Software Structural Biology Variability |
title | Conformational variability in proteins bound to single‐stranded DNA: A new benchmark for new docking perspectives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T15%3A09%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conformational%20variability%20in%20proteins%20bound%20to%20single%E2%80%90stranded%20DNA:%20A%20new%20benchmark%20for%20new%20docking%20perspectives&rft.jtitle=Proteins,%20structure,%20function,%20and%20bioinformatics&rft.au=Mias%E2%80%90Lucquin,%20Dominique&rft.date=2022-03&rft.volume=90&rft.issue=3&rft.spage=625&rft.epage=631&rft.pages=625-631&rft.issn=0887-3585&rft.eissn=1097-0134&rft_id=info:doi/10.1002/prot.26258&rft_dat=%3Cproquest_pubme%3E2580024529%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2625218813&rft_id=info:pmid/34617336&rfr_iscdi=true |