Effects of human footprint and biophysical factors on the body‐size structure of fished marine species
Marine fisheries in coastal ecosystems in many areas of the world have historically removed large‐bodied individuals, potentially impairing ecosystem functioning and the long‐term sustainability of fish populations. Reporting on size‐based indicators that link to food‐web structure can contribute to...
Gespeichert in:
Veröffentlicht in: | Conservation biology 2022-04, Vol.36 (2), p.e13807-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 2 |
container_start_page | e13807 |
container_title | Conservation biology |
container_volume | 36 |
creator | Bosch, Nestor E. Monk, Jacquomo Goetze, Jordan Wilson, Shaun Babcock, Russell C. Barrett, Neville Clough, Jock Currey‐Randall, Leanne M. Fairclough, David V. Fisher, Rebecca Gibbons, Brooke A. Harasti, David Harvey, Euan S. Heupel, Michelle R. Hicks, Jamie L. Holmes, Thomas H. Huveneers, Charlie Ierodiaconou, Daniel Jordan, Alan Knott, Nathan A. Malcolm, Hamish A. McLean, Dianne Meekan, Mark Newman, Stephen J. Radford, Ben Rees, Matthew J. Saunders, Benjamin J. Speed, Conrad W. Travers, Michael J. Wakefield, Corey B. Wernberg, Thomas Langlois, Tim J. |
description | Marine fisheries in coastal ecosystems in many areas of the world have historically removed large‐bodied individuals, potentially impairing ecosystem functioning and the long‐term sustainability of fish populations. Reporting on size‐based indicators that link to food‐web structure can contribute to ecosystem‐based management, but the application of these indicators over large (cross‐ecosystem) geographical scales has been limited to either fisheries‐dependent catch data or diver‐based methods restricted to shallow waters ( |
doi_str_mv | 10.1111/cobi.13807 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9292308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2650065609</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4487-9f43e65842af72831a63150008e811ab9572eb0df5f62cd4c79f2495da4c65a33</originalsourceid><addsrcrecordid>eNp9kc9qFTEUh4Mo9lrd-AAScCPC1PydSTaCvdS2UOhG1yGTOXFS5k6uScZyXfkIPqNPYq63FnXh2ZzF-fj4HX4IPafkhNZ542IfTihXpHuAVlQy3tCO64doRZRSjVKaHaEnOd8QQrSk4jE64oJTpjRfofHMe3Al4-jxuGzsjH2MZZvCXLCdB9yHuB13OTg7YW9diamiMy4j4D4Oux_fvufwFXAuaXFlSbD3-JBHGPDGVks9bcEFyE_RI2-nDM_u9jH6-P7sw_qiubo-v1y_u2qcEKprtBccWqkEs75jilPbciprcgWKUttr2THoyeClb5kbhOu0Z0LLwQrXSsv5MXp78G6XfgODg7kkO5n6Uc2zM9EG8_dlDqP5FL8YzTTjRFXBqztBip8XyMVsQnYwTXaGuGTDpJStIB3rKvryH_QmLmmu7xnW1tCtbImu1OsD5VLMOYG_D0OJ2Rdo9gWaXwVW-MWf8e_R341VgB6A2zDB7j8qs74-vTxIfwI1q6gN</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2650065609</pqid></control><display><type>article</type><title>Effects of human footprint and biophysical factors on the body‐size structure of fished marine species</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bosch, Nestor E. ; Monk, Jacquomo ; Goetze, Jordan ; Wilson, Shaun ; Babcock, Russell C. ; Barrett, Neville ; Clough, Jock ; Currey‐Randall, Leanne M. ; Fairclough, David V. ; Fisher, Rebecca ; Gibbons, Brooke A. ; Harasti, David ; Harvey, Euan S. ; Heupel, Michelle R. ; Hicks, Jamie L. ; Holmes, Thomas H. ; Huveneers, Charlie ; Ierodiaconou, Daniel ; Jordan, Alan ; Knott, Nathan A. ; Malcolm, Hamish A. ; McLean, Dianne ; Meekan, Mark ; Newman, Stephen J. ; Radford, Ben ; Rees, Matthew J. ; Saunders, Benjamin J. ; Speed, Conrad W. ; Travers, Michael J. ; Wakefield, Corey B. ; Wernberg, Thomas ; Langlois, Tim J.</creator><creatorcontrib>Bosch, Nestor E. ; Monk, Jacquomo ; Goetze, Jordan ; Wilson, Shaun ; Babcock, Russell C. ; Barrett, Neville ; Clough, Jock ; Currey‐Randall, Leanne M. ; Fairclough, David V. ; Fisher, Rebecca ; Gibbons, Brooke A. ; Harasti, David ; Harvey, Euan S. ; Heupel, Michelle R. ; Hicks, Jamie L. ; Holmes, Thomas H. ; Huveneers, Charlie ; Ierodiaconou, Daniel ; Jordan, Alan ; Knott, Nathan A. ; Malcolm, Hamish A. ; McLean, Dianne ; Meekan, Mark ; Newman, Stephen J. ; Radford, Ben ; Rees, Matthew J. ; Saunders, Benjamin J. ; Speed, Conrad W. ; Travers, Michael J. ; Wakefield, Corey B. ; Wernberg, Thomas ; Langlois, Tim J.</creatorcontrib><description>Marine fisheries in coastal ecosystems in many areas of the world have historically removed large‐bodied individuals, potentially impairing ecosystem functioning and the long‐term sustainability of fish populations. Reporting on size‐based indicators that link to food‐web structure can contribute to ecosystem‐based management, but the application of these indicators over large (cross‐ecosystem) geographical scales has been limited to either fisheries‐dependent catch data or diver‐based methods restricted to shallow waters (<20 m) that can misrepresent the abundance of large‐bodied fished species. We obtained data on the body‐size structure of 82 recreationally or commercially targeted marine demersal teleosts from 2904 deployments of baited remote underwater stereo‐video (stereo‐BRUV). Sampling was at up to 50 m depth and covered approximately 10,000 km of the continental shelf of Australia. Seascape relief, water depth, and human gravity (i.e., a proxy of human impacts) were the strongest predictors of the probability of occurrence of large fishes and the abundance of fishes above the minimum legal size of capture. No‐take marine reserves had a positive effect on the abundance of fishes above legal size, although the effect varied across species groups. In contrast, sublegal fishes were best predicted by gradients in sea surface temperature (mean and variance). In areas of low human impact, large fishes were about three times more likely to be encountered and fishes of legal size were approximately five times more abundant. For conspicuous species groups with contrasting habitat, environmental, and biogeographic affinities, abundance of legal‐size fishes typically declined as human impact increased. Our large‐scale quantitative analyses highlight the combined importance of seascape complexity, regions with low human footprint, and no‐take marine reserves in protecting large‐bodied fishes across a broad range of species and ecosystem configurations.
Resumen
Las pesquerías marinas de los ecosistemas costeros en muchas áreas del mundo históricamente han removido a individuos de gran tamaño, potencialmente perjudicando el funcionamiento ambiental y la sostenibilidad a largo plazo de las poblaciones de peces. Los reportes sobre los indicadores basados en el tamaño que se vinculan con la estructura de la red alimenticia pueden contribuir al manejo basado en el ecosistema, aunque la aplicación de estos indicadores a grandes (inter‐ecosistemas) escalas geográficas ha estado limitada a datos de captura dependientes de las pesquerías o métodos basados en el buceo restringidos a aguas someras (<20 m), lo cual puede representar erróneamente la abundancia de peces de gran tamaño capturados para la pesca. Obtuvimos los datos de la estructura del tamaño corporal de 82 teleósteos marinos demersales focalizados por razones recreativas o comerciales tomados de 2,904 despliegues de video estéreo subacuático remoto con cebo (stereo‐BRUV, en inglés). El muestreo se realizó hasta los 50 metros de profundidad y abarcó aproximadamente 10,000 km del talud continental de Australia. El relieve marino, la profundidad del agua y la gravedad humana (es decir, un indicador de los impactos humanos) fueron los pronosticadores más sólidos de la probabilidad de incidencia de los peces de gran tamaño y de la abundancia de peces por encima del tamaño legal mínimo de captura. Las reservas marinas de protección total tienen un efecto positivo sobre la abundancia de los peces que están por encima del tamaño legal, aunque el efecto varió según el grupo de especies. Como contraste, los peces de tamaño sublegal fueron pronosticados de mejor manera usando gradientes de la temperatura de la superficie marina (media y varianza). En las áreas con un impacto humano reducido, los peces de gran tamaño corporal tenían hasta tres veces mayor probabilidad de aparecer y los peces de tamaño legal eran aproximadamente cinco veces más abundantes. Para los grupos de especies conspicuas con afinidades contrastantes de hábitat, ambiente y biogeografía, la abundancia de peces de tamaño legal normalmente declinó conforme aumentó el impacto humano. Nuestros análisis cuantitativos a gran escala resaltan la importancia conjunta que tienen la complejidad marina, las regiones con una huella humana reducida y las reservas marinas de protección total para la protección de los peces de gran tamaño corporal en una extensa gama de especies y configuraciones ecosistémicas.
Efectos de la Huella Humana y los Factores Biofísicos sobre la Estructura del Tamaño Corporal de Especies Marinas Capturadas para la Pesca</description><identifier>ISSN: 0888-8892</identifier><identifier>EISSN: 1523-1739</identifier><identifier>DOI: 10.1111/cobi.13807</identifier><identifier>PMID: 34312893</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Abundance ; Animals ; Australia ; baited remote underwater stereo‐video ; Body Size ; Catch statistics ; Coastal ecosystems ; Coastal fisheries ; Conservation of Natural Resources ; Continental shelves ; Contributed Paper ; Contributed Papers ; Ecological function ; Ecosystem ; ecosystem functioning ; Ecosystem management ; Ecosystems ; environmental reporting ; Fish ; Fish populations ; Fisheries ; Fishery data ; Fishes ; fishing ; Food webs ; Footprints ; funcionamiento ambiental ; gravedad humana ; Gravity ; human gravity ; Human impact ; Human influences ; Humans ; Indicators ; Marinas ; Marine ecosystems ; Marine fish ; Marine fisheries ; Marine parks ; Nature reserves ; no‐take marine reserves ; pesca ; Potential resources ; Probability theory ; reporte ambiental ; reservas de protección total ; Sea surface ; Sea surface temperature ; Shallow water ; Species ; Surface temperature ; Sustainability ; video estéreo subacuático remoto con cebo ; Water depth</subject><ispartof>Conservation biology, 2022-04, Vol.36 (2), p.e13807-n/a</ispartof><rights>2021 The Authors. published by Wiley Periodicals LLC on behalf of Society for Conservation Biology</rights><rights>2021 The Authors. Conservation Biology published by Wiley Periodicals LLC on behalf of Society for Conservation Biology.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4487-9f43e65842af72831a63150008e811ab9572eb0df5f62cd4c79f2495da4c65a33</citedby><cites>FETCH-LOGICAL-c4487-9f43e65842af72831a63150008e811ab9572eb0df5f62cd4c79f2495da4c65a33</cites><orcidid>0000-0002-2472-6215 ; 0000-0003-0421-8456 ; 0000-0002-8245-7332 ; 0000-0003-1715-9109 ; 0000-0003-3186-8710 ; 0000-0001-5383-7603 ; 0000-0002-0628-7781 ; 0000-0002-7832-4801 ; 0000-0002-1874-0619 ; 0000-0001-6404-4000 ; 0000-0003-1185-9745 ; 0000-0002-7756-1290 ; 0000-0001-5148-6731 ; 0000-0003-1135-1618 ; 0000-0002-4590-0948 ; 0000-0001-7925-5900 ; 0000-0002-2851-9838 ; 0000-0002-5324-5568 ; 0000-0002-7873-0412 ; 0000-0002-3090-9763 ; 0000-0001-8937-1358 ; 0000-0002-3772-1288 ; 0000-0002-9069-4581 ; 0000-0002-3072-1699 ; 0000-0002-6167-1356 ; 0000-0002-0306-8348 ; 0000-0001-5435-6473 ; 0000-0002-3067-9427 ; 0000-0002-9620-5064 ; 0000-0001-7315-1537</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fcobi.13807$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fcobi.13807$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34312893$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bosch, Nestor E.</creatorcontrib><creatorcontrib>Monk, Jacquomo</creatorcontrib><creatorcontrib>Goetze, Jordan</creatorcontrib><creatorcontrib>Wilson, Shaun</creatorcontrib><creatorcontrib>Babcock, Russell C.</creatorcontrib><creatorcontrib>Barrett, Neville</creatorcontrib><creatorcontrib>Clough, Jock</creatorcontrib><creatorcontrib>Currey‐Randall, Leanne M.</creatorcontrib><creatorcontrib>Fairclough, David V.</creatorcontrib><creatorcontrib>Fisher, Rebecca</creatorcontrib><creatorcontrib>Gibbons, Brooke A.</creatorcontrib><creatorcontrib>Harasti, David</creatorcontrib><creatorcontrib>Harvey, Euan S.</creatorcontrib><creatorcontrib>Heupel, Michelle R.</creatorcontrib><creatorcontrib>Hicks, Jamie L.</creatorcontrib><creatorcontrib>Holmes, Thomas H.</creatorcontrib><creatorcontrib>Huveneers, Charlie</creatorcontrib><creatorcontrib>Ierodiaconou, Daniel</creatorcontrib><creatorcontrib>Jordan, Alan</creatorcontrib><creatorcontrib>Knott, Nathan A.</creatorcontrib><creatorcontrib>Malcolm, Hamish A.</creatorcontrib><creatorcontrib>McLean, Dianne</creatorcontrib><creatorcontrib>Meekan, Mark</creatorcontrib><creatorcontrib>Newman, Stephen J.</creatorcontrib><creatorcontrib>Radford, Ben</creatorcontrib><creatorcontrib>Rees, Matthew J.</creatorcontrib><creatorcontrib>Saunders, Benjamin J.</creatorcontrib><creatorcontrib>Speed, Conrad W.</creatorcontrib><creatorcontrib>Travers, Michael J.</creatorcontrib><creatorcontrib>Wakefield, Corey B.</creatorcontrib><creatorcontrib>Wernberg, Thomas</creatorcontrib><creatorcontrib>Langlois, Tim J.</creatorcontrib><title>Effects of human footprint and biophysical factors on the body‐size structure of fished marine species</title><title>Conservation biology</title><addtitle>Conserv Biol</addtitle><description>Marine fisheries in coastal ecosystems in many areas of the world have historically removed large‐bodied individuals, potentially impairing ecosystem functioning and the long‐term sustainability of fish populations. Reporting on size‐based indicators that link to food‐web structure can contribute to ecosystem‐based management, but the application of these indicators over large (cross‐ecosystem) geographical scales has been limited to either fisheries‐dependent catch data or diver‐based methods restricted to shallow waters (<20 m) that can misrepresent the abundance of large‐bodied fished species. We obtained data on the body‐size structure of 82 recreationally or commercially targeted marine demersal teleosts from 2904 deployments of baited remote underwater stereo‐video (stereo‐BRUV). Sampling was at up to 50 m depth and covered approximately 10,000 km of the continental shelf of Australia. Seascape relief, water depth, and human gravity (i.e., a proxy of human impacts) were the strongest predictors of the probability of occurrence of large fishes and the abundance of fishes above the minimum legal size of capture. No‐take marine reserves had a positive effect on the abundance of fishes above legal size, although the effect varied across species groups. In contrast, sublegal fishes were best predicted by gradients in sea surface temperature (mean and variance). In areas of low human impact, large fishes were about three times more likely to be encountered and fishes of legal size were approximately five times more abundant. For conspicuous species groups with contrasting habitat, environmental, and biogeographic affinities, abundance of legal‐size fishes typically declined as human impact increased. Our large‐scale quantitative analyses highlight the combined importance of seascape complexity, regions with low human footprint, and no‐take marine reserves in protecting large‐bodied fishes across a broad range of species and ecosystem configurations.
Resumen
Las pesquerías marinas de los ecosistemas costeros en muchas áreas del mundo históricamente han removido a individuos de gran tamaño, potencialmente perjudicando el funcionamiento ambiental y la sostenibilidad a largo plazo de las poblaciones de peces. Los reportes sobre los indicadores basados en el tamaño que se vinculan con la estructura de la red alimenticia pueden contribuir al manejo basado en el ecosistema, aunque la aplicación de estos indicadores a grandes (inter‐ecosistemas) escalas geográficas ha estado limitada a datos de captura dependientes de las pesquerías o métodos basados en el buceo restringidos a aguas someras (<20 m), lo cual puede representar erróneamente la abundancia de peces de gran tamaño capturados para la pesca. Obtuvimos los datos de la estructura del tamaño corporal de 82 teleósteos marinos demersales focalizados por razones recreativas o comerciales tomados de 2,904 despliegues de video estéreo subacuático remoto con cebo (stereo‐BRUV, en inglés). El muestreo se realizó hasta los 50 metros de profundidad y abarcó aproximadamente 10,000 km del talud continental de Australia. El relieve marino, la profundidad del agua y la gravedad humana (es decir, un indicador de los impactos humanos) fueron los pronosticadores más sólidos de la probabilidad de incidencia de los peces de gran tamaño y de la abundancia de peces por encima del tamaño legal mínimo de captura. Las reservas marinas de protección total tienen un efecto positivo sobre la abundancia de los peces que están por encima del tamaño legal, aunque el efecto varió según el grupo de especies. Como contraste, los peces de tamaño sublegal fueron pronosticados de mejor manera usando gradientes de la temperatura de la superficie marina (media y varianza). En las áreas con un impacto humano reducido, los peces de gran tamaño corporal tenían hasta tres veces mayor probabilidad de aparecer y los peces de tamaño legal eran aproximadamente cinco veces más abundantes. Para los grupos de especies conspicuas con afinidades contrastantes de hábitat, ambiente y biogeografía, la abundancia de peces de tamaño legal normalmente declinó conforme aumentó el impacto humano. Nuestros análisis cuantitativos a gran escala resaltan la importancia conjunta que tienen la complejidad marina, las regiones con una huella humana reducida y las reservas marinas de protección total para la protección de los peces de gran tamaño corporal en una extensa gama de especies y configuraciones ecosistémicas.
Efectos de la Huella Humana y los Factores Biofísicos sobre la Estructura del Tamaño Corporal de Especies Marinas Capturadas para la Pesca</description><subject>Abundance</subject><subject>Animals</subject><subject>Australia</subject><subject>baited remote underwater stereo‐video</subject><subject>Body Size</subject><subject>Catch statistics</subject><subject>Coastal ecosystems</subject><subject>Coastal fisheries</subject><subject>Conservation of Natural Resources</subject><subject>Continental shelves</subject><subject>Contributed Paper</subject><subject>Contributed Papers</subject><subject>Ecological function</subject><subject>Ecosystem</subject><subject>ecosystem functioning</subject><subject>Ecosystem management</subject><subject>Ecosystems</subject><subject>environmental reporting</subject><subject>Fish</subject><subject>Fish populations</subject><subject>Fisheries</subject><subject>Fishery data</subject><subject>Fishes</subject><subject>fishing</subject><subject>Food webs</subject><subject>Footprints</subject><subject>funcionamiento ambiental</subject><subject>gravedad humana</subject><subject>Gravity</subject><subject>human gravity</subject><subject>Human impact</subject><subject>Human influences</subject><subject>Humans</subject><subject>Indicators</subject><subject>Marinas</subject><subject>Marine ecosystems</subject><subject>Marine fish</subject><subject>Marine fisheries</subject><subject>Marine parks</subject><subject>Nature reserves</subject><subject>no‐take marine reserves</subject><subject>pesca</subject><subject>Potential resources</subject><subject>Probability theory</subject><subject>reporte ambiental</subject><subject>reservas de protección total</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Shallow water</subject><subject>Species</subject><subject>Surface temperature</subject><subject>Sustainability</subject><subject>video estéreo subacuático remoto con cebo</subject><subject>Water depth</subject><issn>0888-8892</issn><issn>1523-1739</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9kc9qFTEUh4Mo9lrd-AAScCPC1PydSTaCvdS2UOhG1yGTOXFS5k6uScZyXfkIPqNPYq63FnXh2ZzF-fj4HX4IPafkhNZ542IfTihXpHuAVlQy3tCO64doRZRSjVKaHaEnOd8QQrSk4jE64oJTpjRfofHMe3Al4-jxuGzsjH2MZZvCXLCdB9yHuB13OTg7YW9diamiMy4j4D4Oux_fvufwFXAuaXFlSbD3-JBHGPDGVks9bcEFyE_RI2-nDM_u9jH6-P7sw_qiubo-v1y_u2qcEKprtBccWqkEs75jilPbciprcgWKUttr2THoyeClb5kbhOu0Z0LLwQrXSsv5MXp78G6XfgODg7kkO5n6Uc2zM9EG8_dlDqP5FL8YzTTjRFXBqztBip8XyMVsQnYwTXaGuGTDpJStIB3rKvryH_QmLmmu7xnW1tCtbImu1OsD5VLMOYG_D0OJ2Rdo9gWaXwVW-MWf8e_R341VgB6A2zDB7j8qs74-vTxIfwI1q6gN</recordid><startdate>202204</startdate><enddate>202204</enddate><creator>Bosch, Nestor E.</creator><creator>Monk, Jacquomo</creator><creator>Goetze, Jordan</creator><creator>Wilson, Shaun</creator><creator>Babcock, Russell C.</creator><creator>Barrett, Neville</creator><creator>Clough, Jock</creator><creator>Currey‐Randall, Leanne M.</creator><creator>Fairclough, David V.</creator><creator>Fisher, Rebecca</creator><creator>Gibbons, Brooke A.</creator><creator>Harasti, David</creator><creator>Harvey, Euan S.</creator><creator>Heupel, Michelle R.</creator><creator>Hicks, Jamie L.</creator><creator>Holmes, Thomas H.</creator><creator>Huveneers, Charlie</creator><creator>Ierodiaconou, Daniel</creator><creator>Jordan, Alan</creator><creator>Knott, Nathan A.</creator><creator>Malcolm, Hamish A.</creator><creator>McLean, Dianne</creator><creator>Meekan, Mark</creator><creator>Newman, Stephen J.</creator><creator>Radford, Ben</creator><creator>Rees, Matthew J.</creator><creator>Saunders, Benjamin J.</creator><creator>Speed, Conrad W.</creator><creator>Travers, Michael J.</creator><creator>Wakefield, Corey B.</creator><creator>Wernberg, Thomas</creator><creator>Langlois, Tim J.</creator><general>Blackwell Publishing Ltd</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7U6</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H95</scope><scope>L.G</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2472-6215</orcidid><orcidid>https://orcid.org/0000-0003-0421-8456</orcidid><orcidid>https://orcid.org/0000-0002-8245-7332</orcidid><orcidid>https://orcid.org/0000-0003-1715-9109</orcidid><orcidid>https://orcid.org/0000-0003-3186-8710</orcidid><orcidid>https://orcid.org/0000-0001-5383-7603</orcidid><orcidid>https://orcid.org/0000-0002-0628-7781</orcidid><orcidid>https://orcid.org/0000-0002-7832-4801</orcidid><orcidid>https://orcid.org/0000-0002-1874-0619</orcidid><orcidid>https://orcid.org/0000-0001-6404-4000</orcidid><orcidid>https://orcid.org/0000-0003-1185-9745</orcidid><orcidid>https://orcid.org/0000-0002-7756-1290</orcidid><orcidid>https://orcid.org/0000-0001-5148-6731</orcidid><orcidid>https://orcid.org/0000-0003-1135-1618</orcidid><orcidid>https://orcid.org/0000-0002-4590-0948</orcidid><orcidid>https://orcid.org/0000-0001-7925-5900</orcidid><orcidid>https://orcid.org/0000-0002-2851-9838</orcidid><orcidid>https://orcid.org/0000-0002-5324-5568</orcidid><orcidid>https://orcid.org/0000-0002-7873-0412</orcidid><orcidid>https://orcid.org/0000-0002-3090-9763</orcidid><orcidid>https://orcid.org/0000-0001-8937-1358</orcidid><orcidid>https://orcid.org/0000-0002-3772-1288</orcidid><orcidid>https://orcid.org/0000-0002-9069-4581</orcidid><orcidid>https://orcid.org/0000-0002-3072-1699</orcidid><orcidid>https://orcid.org/0000-0002-6167-1356</orcidid><orcidid>https://orcid.org/0000-0002-0306-8348</orcidid><orcidid>https://orcid.org/0000-0001-5435-6473</orcidid><orcidid>https://orcid.org/0000-0002-3067-9427</orcidid><orcidid>https://orcid.org/0000-0002-9620-5064</orcidid><orcidid>https://orcid.org/0000-0001-7315-1537</orcidid></search><sort><creationdate>202204</creationdate><title>Effects of human footprint and biophysical factors on the body‐size structure of fished marine species</title><author>Bosch, Nestor E. ; Monk, Jacquomo ; Goetze, Jordan ; Wilson, Shaun ; Babcock, Russell C. ; Barrett, Neville ; Clough, Jock ; Currey‐Randall, Leanne M. ; Fairclough, David V. ; Fisher, Rebecca ; Gibbons, Brooke A. ; Harasti, David ; Harvey, Euan S. ; Heupel, Michelle R. ; Hicks, Jamie L. ; Holmes, Thomas H. ; Huveneers, Charlie ; Ierodiaconou, Daniel ; Jordan, Alan ; Knott, Nathan A. ; Malcolm, Hamish A. ; McLean, Dianne ; Meekan, Mark ; Newman, Stephen J. ; Radford, Ben ; Rees, Matthew J. ; Saunders, Benjamin J. ; Speed, Conrad W. ; Travers, Michael J. ; Wakefield, Corey B. ; Wernberg, Thomas ; Langlois, Tim J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4487-9f43e65842af72831a63150008e811ab9572eb0df5f62cd4c79f2495da4c65a33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Abundance</topic><topic>Animals</topic><topic>Australia</topic><topic>baited remote underwater stereo‐video</topic><topic>Body Size</topic><topic>Catch statistics</topic><topic>Coastal ecosystems</topic><topic>Coastal fisheries</topic><topic>Conservation of Natural Resources</topic><topic>Continental shelves</topic><topic>Contributed Paper</topic><topic>Contributed Papers</topic><topic>Ecological function</topic><topic>Ecosystem</topic><topic>ecosystem functioning</topic><topic>Ecosystem management</topic><topic>Ecosystems</topic><topic>environmental reporting</topic><topic>Fish</topic><topic>Fish populations</topic><topic>Fisheries</topic><topic>Fishery data</topic><topic>Fishes</topic><topic>fishing</topic><topic>Food webs</topic><topic>Footprints</topic><topic>funcionamiento ambiental</topic><topic>gravedad humana</topic><topic>Gravity</topic><topic>human gravity</topic><topic>Human impact</topic><topic>Human influences</topic><topic>Humans</topic><topic>Indicators</topic><topic>Marinas</topic><topic>Marine ecosystems</topic><topic>Marine fish</topic><topic>Marine fisheries</topic><topic>Marine parks</topic><topic>Nature reserves</topic><topic>no‐take marine reserves</topic><topic>pesca</topic><topic>Potential resources</topic><topic>Probability theory</topic><topic>reporte ambiental</topic><topic>reservas de protección total</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Shallow water</topic><topic>Species</topic><topic>Surface temperature</topic><topic>Sustainability</topic><topic>video estéreo subacuático remoto con cebo</topic><topic>Water depth</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bosch, Nestor E.</creatorcontrib><creatorcontrib>Monk, Jacquomo</creatorcontrib><creatorcontrib>Goetze, Jordan</creatorcontrib><creatorcontrib>Wilson, Shaun</creatorcontrib><creatorcontrib>Babcock, Russell C.</creatorcontrib><creatorcontrib>Barrett, Neville</creatorcontrib><creatorcontrib>Clough, Jock</creatorcontrib><creatorcontrib>Currey‐Randall, Leanne M.</creatorcontrib><creatorcontrib>Fairclough, David V.</creatorcontrib><creatorcontrib>Fisher, Rebecca</creatorcontrib><creatorcontrib>Gibbons, Brooke A.</creatorcontrib><creatorcontrib>Harasti, David</creatorcontrib><creatorcontrib>Harvey, Euan S.</creatorcontrib><creatorcontrib>Heupel, Michelle R.</creatorcontrib><creatorcontrib>Hicks, Jamie L.</creatorcontrib><creatorcontrib>Holmes, Thomas H.</creatorcontrib><creatorcontrib>Huveneers, Charlie</creatorcontrib><creatorcontrib>Ierodiaconou, Daniel</creatorcontrib><creatorcontrib>Jordan, Alan</creatorcontrib><creatorcontrib>Knott, Nathan A.</creatorcontrib><creatorcontrib>Malcolm, Hamish A.</creatorcontrib><creatorcontrib>McLean, Dianne</creatorcontrib><creatorcontrib>Meekan, Mark</creatorcontrib><creatorcontrib>Newman, Stephen J.</creatorcontrib><creatorcontrib>Radford, Ben</creatorcontrib><creatorcontrib>Rees, Matthew J.</creatorcontrib><creatorcontrib>Saunders, Benjamin J.</creatorcontrib><creatorcontrib>Speed, Conrad W.</creatorcontrib><creatorcontrib>Travers, Michael J.</creatorcontrib><creatorcontrib>Wakefield, Corey B.</creatorcontrib><creatorcontrib>Wernberg, Thomas</creatorcontrib><creatorcontrib>Langlois, Tim J.</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Conservation biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bosch, Nestor E.</au><au>Monk, Jacquomo</au><au>Goetze, Jordan</au><au>Wilson, Shaun</au><au>Babcock, Russell C.</au><au>Barrett, Neville</au><au>Clough, Jock</au><au>Currey‐Randall, Leanne M.</au><au>Fairclough, David V.</au><au>Fisher, Rebecca</au><au>Gibbons, Brooke A.</au><au>Harasti, David</au><au>Harvey, Euan S.</au><au>Heupel, Michelle R.</au><au>Hicks, Jamie L.</au><au>Holmes, Thomas H.</au><au>Huveneers, Charlie</au><au>Ierodiaconou, Daniel</au><au>Jordan, Alan</au><au>Knott, Nathan A.</au><au>Malcolm, Hamish A.</au><au>McLean, Dianne</au><au>Meekan, Mark</au><au>Newman, Stephen J.</au><au>Radford, Ben</au><au>Rees, Matthew J.</au><au>Saunders, Benjamin J.</au><au>Speed, Conrad W.</au><au>Travers, Michael J.</au><au>Wakefield, Corey B.</au><au>Wernberg, Thomas</au><au>Langlois, Tim J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of human footprint and biophysical factors on the body‐size structure of fished marine species</atitle><jtitle>Conservation biology</jtitle><addtitle>Conserv Biol</addtitle><date>2022-04</date><risdate>2022</risdate><volume>36</volume><issue>2</issue><spage>e13807</spage><epage>n/a</epage><pages>e13807-n/a</pages><issn>0888-8892</issn><eissn>1523-1739</eissn><abstract>Marine fisheries in coastal ecosystems in many areas of the world have historically removed large‐bodied individuals, potentially impairing ecosystem functioning and the long‐term sustainability of fish populations. Reporting on size‐based indicators that link to food‐web structure can contribute to ecosystem‐based management, but the application of these indicators over large (cross‐ecosystem) geographical scales has been limited to either fisheries‐dependent catch data or diver‐based methods restricted to shallow waters (<20 m) that can misrepresent the abundance of large‐bodied fished species. We obtained data on the body‐size structure of 82 recreationally or commercially targeted marine demersal teleosts from 2904 deployments of baited remote underwater stereo‐video (stereo‐BRUV). Sampling was at up to 50 m depth and covered approximately 10,000 km of the continental shelf of Australia. Seascape relief, water depth, and human gravity (i.e., a proxy of human impacts) were the strongest predictors of the probability of occurrence of large fishes and the abundance of fishes above the minimum legal size of capture. No‐take marine reserves had a positive effect on the abundance of fishes above legal size, although the effect varied across species groups. In contrast, sublegal fishes were best predicted by gradients in sea surface temperature (mean and variance). In areas of low human impact, large fishes were about three times more likely to be encountered and fishes of legal size were approximately five times more abundant. For conspicuous species groups with contrasting habitat, environmental, and biogeographic affinities, abundance of legal‐size fishes typically declined as human impact increased. Our large‐scale quantitative analyses highlight the combined importance of seascape complexity, regions with low human footprint, and no‐take marine reserves in protecting large‐bodied fishes across a broad range of species and ecosystem configurations.
Resumen
Las pesquerías marinas de los ecosistemas costeros en muchas áreas del mundo históricamente han removido a individuos de gran tamaño, potencialmente perjudicando el funcionamiento ambiental y la sostenibilidad a largo plazo de las poblaciones de peces. Los reportes sobre los indicadores basados en el tamaño que se vinculan con la estructura de la red alimenticia pueden contribuir al manejo basado en el ecosistema, aunque la aplicación de estos indicadores a grandes (inter‐ecosistemas) escalas geográficas ha estado limitada a datos de captura dependientes de las pesquerías o métodos basados en el buceo restringidos a aguas someras (<20 m), lo cual puede representar erróneamente la abundancia de peces de gran tamaño capturados para la pesca. Obtuvimos los datos de la estructura del tamaño corporal de 82 teleósteos marinos demersales focalizados por razones recreativas o comerciales tomados de 2,904 despliegues de video estéreo subacuático remoto con cebo (stereo‐BRUV, en inglés). El muestreo se realizó hasta los 50 metros de profundidad y abarcó aproximadamente 10,000 km del talud continental de Australia. El relieve marino, la profundidad del agua y la gravedad humana (es decir, un indicador de los impactos humanos) fueron los pronosticadores más sólidos de la probabilidad de incidencia de los peces de gran tamaño y de la abundancia de peces por encima del tamaño legal mínimo de captura. Las reservas marinas de protección total tienen un efecto positivo sobre la abundancia de los peces que están por encima del tamaño legal, aunque el efecto varió según el grupo de especies. Como contraste, los peces de tamaño sublegal fueron pronosticados de mejor manera usando gradientes de la temperatura de la superficie marina (media y varianza). En las áreas con un impacto humano reducido, los peces de gran tamaño corporal tenían hasta tres veces mayor probabilidad de aparecer y los peces de tamaño legal eran aproximadamente cinco veces más abundantes. Para los grupos de especies conspicuas con afinidades contrastantes de hábitat, ambiente y biogeografía, la abundancia de peces de tamaño legal normalmente declinó conforme aumentó el impacto humano. Nuestros análisis cuantitativos a gran escala resaltan la importancia conjunta que tienen la complejidad marina, las regiones con una huella humana reducida y las reservas marinas de protección total para la protección de los peces de gran tamaño corporal en una extensa gama de especies y configuraciones ecosistémicas.
Efectos de la Huella Humana y los Factores Biofísicos sobre la Estructura del Tamaño Corporal de Especies Marinas Capturadas para la Pesca</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>34312893</pmid><doi>10.1111/cobi.13807</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2472-6215</orcidid><orcidid>https://orcid.org/0000-0003-0421-8456</orcidid><orcidid>https://orcid.org/0000-0002-8245-7332</orcidid><orcidid>https://orcid.org/0000-0003-1715-9109</orcidid><orcidid>https://orcid.org/0000-0003-3186-8710</orcidid><orcidid>https://orcid.org/0000-0001-5383-7603</orcidid><orcidid>https://orcid.org/0000-0002-0628-7781</orcidid><orcidid>https://orcid.org/0000-0002-7832-4801</orcidid><orcidid>https://orcid.org/0000-0002-1874-0619</orcidid><orcidid>https://orcid.org/0000-0001-6404-4000</orcidid><orcidid>https://orcid.org/0000-0003-1185-9745</orcidid><orcidid>https://orcid.org/0000-0002-7756-1290</orcidid><orcidid>https://orcid.org/0000-0001-5148-6731</orcidid><orcidid>https://orcid.org/0000-0003-1135-1618</orcidid><orcidid>https://orcid.org/0000-0002-4590-0948</orcidid><orcidid>https://orcid.org/0000-0001-7925-5900</orcidid><orcidid>https://orcid.org/0000-0002-2851-9838</orcidid><orcidid>https://orcid.org/0000-0002-5324-5568</orcidid><orcidid>https://orcid.org/0000-0002-7873-0412</orcidid><orcidid>https://orcid.org/0000-0002-3090-9763</orcidid><orcidid>https://orcid.org/0000-0001-8937-1358</orcidid><orcidid>https://orcid.org/0000-0002-3772-1288</orcidid><orcidid>https://orcid.org/0000-0002-9069-4581</orcidid><orcidid>https://orcid.org/0000-0002-3072-1699</orcidid><orcidid>https://orcid.org/0000-0002-6167-1356</orcidid><orcidid>https://orcid.org/0000-0002-0306-8348</orcidid><orcidid>https://orcid.org/0000-0001-5435-6473</orcidid><orcidid>https://orcid.org/0000-0002-3067-9427</orcidid><orcidid>https://orcid.org/0000-0002-9620-5064</orcidid><orcidid>https://orcid.org/0000-0001-7315-1537</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0888-8892 |
ispartof | Conservation biology, 2022-04, Vol.36 (2), p.e13807-n/a |
issn | 0888-8892 1523-1739 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9292308 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Abundance Animals Australia baited remote underwater stereo‐video Body Size Catch statistics Coastal ecosystems Coastal fisheries Conservation of Natural Resources Continental shelves Contributed Paper Contributed Papers Ecological function Ecosystem ecosystem functioning Ecosystem management Ecosystems environmental reporting Fish Fish populations Fisheries Fishery data Fishes fishing Food webs Footprints funcionamiento ambiental gravedad humana Gravity human gravity Human impact Human influences Humans Indicators Marinas Marine ecosystems Marine fish Marine fisheries Marine parks Nature reserves no‐take marine reserves pesca Potential resources Probability theory reporte ambiental reservas de protección total Sea surface Sea surface temperature Shallow water Species Surface temperature Sustainability video estéreo subacuático remoto con cebo Water depth |
title | Effects of human footprint and biophysical factors on the body‐size structure of fished marine species |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T13%3A12%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20human%20footprint%20and%20biophysical%20factors%20on%20the%20body%E2%80%90size%20structure%20of%20fished%20marine%20species&rft.jtitle=Conservation%20biology&rft.au=Bosch,%20Nestor%20E.&rft.date=2022-04&rft.volume=36&rft.issue=2&rft.spage=e13807&rft.epage=n/a&rft.pages=e13807-n/a&rft.issn=0888-8892&rft.eissn=1523-1739&rft_id=info:doi/10.1111/cobi.13807&rft_dat=%3Cproquest_pubme%3E2650065609%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2650065609&rft_id=info:pmid/34312893&rfr_iscdi=true |