What do we know about growth of vessel elements of secondary xylem in woody plants?

ABSTRACT Despite extensive knowledge about vessel element growth and the determination of the axial course of vessels, these processes are still not fully understood. They are usually explained as resulting primarily from hormonal regulation in stems. This review focuses on an increasingly discussed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biological reviews of the Cambridge Philosophical Society 2021-12, Vol.96 (6), p.2911-2924
Hauptverfasser: Miodek, Adam, Gizińska, Aldona, Włoch, Wiesław, Kojs, Paweł
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACT Despite extensive knowledge about vessel element growth and the determination of the axial course of vessels, these processes are still not fully understood. They are usually explained as resulting primarily from hormonal regulation in stems. This review focuses on an increasingly discussed aspect – mechanical conditions in the vascular cambium. Mechanical conditions in cambial tissue are important for the growth of vessel elements, as well as other cambial derivatives. In relation to the type of stress acting on cambial cells (compressive versus tensile stress) we: (i) discuss the shape of the enlarging vessel elements observed in anatomical sections; (ii) present hypotheses regarding the location of intrusive growth of vessel elements and cambial initials; (iii) explain the relationship between the growth of vessel elements and fibres; and (iv) consider the effect of mechanical stress in determining the course of a vessel. We also highlight the relationship between mechanical stress and transport of the most extensively studied plant hormone – auxin. We conclude that the integration of a biomechanical factor with the commonly acknowledged hormonal regulation could significantly enhance the analysis of the formation of vessel elements as well as entire vessels, which transport water and minerals in numerous plant species.
ISSN:1464-7931
1469-185X
DOI:10.1111/brv.12785