Iron-containing metal-organic framework thin film as a drug delivery system

Selective bulk metal-organic frameworks (MOFs) have exhibited great potential in biomedical applications. However, topical treatments and drug elution coatings will require uniform films as drug delivery systems. This work studies the use of surface supportive MOF thin films for drug loading and rel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Colloids and surfaces. A, Physicochemical and engineering aspects Physicochemical and engineering aspects, 2022-10, Vol.650, p.129611, Article 129611
Hauptverfasser: Bui, Angela, Guillen, Steven G., Sua, Andy, Nguyen, Travis C., Ruiz, Angel, Carachure, Lester, Weber, Mark D.R., Cortez, Araseli, Tian, Fangyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Selective bulk metal-organic frameworks (MOFs) have exhibited great potential in biomedical applications. However, topical treatments and drug elution coatings will require uniform films as drug delivery systems. This work studies the use of surface supportive MOF thin films for drug loading and releasing. More specifically, we focus on an iron-containing MOF, MIL-88B(Fe), on a COOH-terminated self-assembled monolayer (SAM) modified Au surface for encapsulating ibuprofen as a model drug. A combined experimental and computational approach was employed to study the fabrication of MIL-88B(Fe) film on functionalized Au surfaces. We used several surface characterization techniques, including infrared spectroscopy and scanning electron microscopy, to confirm the chemical composition and morphological changes of the surface after each modification step. The resulting MIL-88B(Fe) thin film was found capable of loading 8.7 wt% of ibuprofen using quartz crystal microbalance analysis. Moreover, we applied cluster simulations to study the binding mechanisms of MIL-88B(Fe) and its interactions with ibuprofen based on the density functional theory (DFT). The unsaturated Fe site was confirmed kinetically more favorable to bind to the COOH-end group on the SAM. Hydrogen bonding and π-CH interactions between ibuprofen and MIL-88B(Fe) promote ibuprofen being retained inside of the cages of MIL-88B(Fe). [Display omitted] •Metal-organic framework thin film can be fabricated on a desired substrate.•MIL-88B(Fe) thin film can be used for potential drug elution coating.•A sustainable drug release behavior was observed for MIL-88B(Fe) thin films.•Unsaturated metal site plays an important role on binding to modified substrate.
ISSN:0927-7757
1873-4359
DOI:10.1016/j.colsurfa.2022.129611