Ultrasound contrast agents: microbubbles made simple for the pediatric radiologist
The ability to provide prompt, real-time, easily accessible and radiation-free diagnostic assessments makes ultrasound (US) one of the most versatile imaging modalities. The introduction and development of stable microbubble-based ultrasound contrast agents (UCAs) in the early 1990s improved visuali...
Gespeichert in:
Veröffentlicht in: | Pediatric radiology 2021-11, Vol.51 (12), p.2117-2127 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2127 |
---|---|
container_issue | 12 |
container_start_page | 2117 |
container_title | Pediatric radiology |
container_volume | 51 |
creator | Sridharan, Anush Eisenbrey, John R. Forsberg, Flemming Lorenz, Norbert Steffgen, Ludwig Ntoulia, Aikaterini |
description | The ability to provide prompt, real-time, easily accessible and radiation-free diagnostic assessments makes ultrasound (US) one of the most versatile imaging modalities. The introduction and development of stable microbubble-based ultrasound contrast agents (UCAs) in the early 1990s improved visualization of complex vascular structures, overcoming some of the limitations of B-mode and Doppler imaging. UCAs have been used extensively in the adult population to visualize vasculature and to evaluate perfusion and blood flow dynamics in organs and lesions. Since the first observations that air bubbles within a liquid can generate a strong echogenic effect, to the early makeshift approaches with agitated saline, and later to the development of industrially produced and federally approved UCAs, these agents have evolved to become both clinically and commercially viable. Perhaps the most exciting potential of UCAs is being uncovered by current research that explores the use of these agents for molecular imaging and therapeutic applications. As contrast-enhanced ultrasound (CEUS) becomes more widely available, it is important for pediatric radiologists to understand the physics of the interaction between the US signal and the microbubbles in order to properly utilize them for the highest level of diagnostic imaging and interventions. In this article we introduce the composition of UCAs and the physics of their behavior in US, and we offer a brief history of their development over the last decades. |
doi_str_mv | 10.1007/s00247-021-05080-1 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9288183</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2592776246</sourcerecordid><originalsourceid>FETCH-LOGICAL-c451t-f77544ba48f49633f0e762c5ede1f53a97a05a79c80deb336ca63777ecb09a6a3</originalsourceid><addsrcrecordid>eNp9kU9LHTEUxUOp1Kf2C3QVcNPN2Jt_k0kXgjyqLQiC6DpkMneekZnJazJT8Ns3r08qunB1L9zfOZzkEPKFwRkD0N8yAJe6As4qUNBAxT6QFZOCV8yY5iNZgYByktIckqOcHwFAKCY-kUMhGdON4Styez_MyeW4TB31cdrtM3UbnOb8nY7Bp9gubTtgpqPrkOYwbgekfUx0fkC6xS64OQVPk-tCHOIm5PmEHPRuyPj5eR6T-8sfd-uf1fXN1a_1xXXlpWJz1WutpGydbHppaiF6QF1zr7BD1ivhjHagnDa-gQ5bIWrvaqG1Rt-CcbUTx-R877td2hE7j7v0g92mMLr0ZKML9vVlCg92E_9Yw5uGNaIYfH02SPH3gnm2Y8geh8FNGJdsuZKgGOdmh56-QR_jkqbyvEIZrktyWReK76nybTkn7P-HYWB3ldl9ZbZUZv9VZlkRib0oF3jaYHqxfkf1F6mgmS0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2592776246</pqid></control><display><type>article</type><title>Ultrasound contrast agents: microbubbles made simple for the pediatric radiologist</title><source>Springer Online Journals Complete</source><creator>Sridharan, Anush ; Eisenbrey, John R. ; Forsberg, Flemming ; Lorenz, Norbert ; Steffgen, Ludwig ; Ntoulia, Aikaterini</creator><creatorcontrib>Sridharan, Anush ; Eisenbrey, John R. ; Forsberg, Flemming ; Lorenz, Norbert ; Steffgen, Ludwig ; Ntoulia, Aikaterini</creatorcontrib><description>The ability to provide prompt, real-time, easily accessible and radiation-free diagnostic assessments makes ultrasound (US) one of the most versatile imaging modalities. The introduction and development of stable microbubble-based ultrasound contrast agents (UCAs) in the early 1990s improved visualization of complex vascular structures, overcoming some of the limitations of B-mode and Doppler imaging. UCAs have been used extensively in the adult population to visualize vasculature and to evaluate perfusion and blood flow dynamics in organs and lesions. Since the first observations that air bubbles within a liquid can generate a strong echogenic effect, to the early makeshift approaches with agitated saline, and later to the development of industrially produced and federally approved UCAs, these agents have evolved to become both clinically and commercially viable. Perhaps the most exciting potential of UCAs is being uncovered by current research that explores the use of these agents for molecular imaging and therapeutic applications. As contrast-enhanced ultrasound (CEUS) becomes more widely available, it is important for pediatric radiologists to understand the physics of the interaction between the US signal and the microbubbles in order to properly utilize them for the highest level of diagnostic imaging and interventions. In this article we introduce the composition of UCAs and the physics of their behavior in US, and we offer a brief history of their development over the last decades.</description><identifier>ISSN: 0301-0449</identifier><identifier>EISSN: 1432-1998</identifier><identifier>DOI: 10.1007/s00247-021-05080-1</identifier><identifier>PMID: 34117892</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Air bubbles ; Blood flow ; Contrast agents ; Contrast media ; Contrast-enhanced ultrasound (CEUS) in children ; Doppler effect ; Imaging ; Medicine ; Medicine & Public Health ; Neuroradiology ; Nuclear Medicine ; Oncology ; Organs ; Pediatrics ; Perfusion ; Radiology ; Therapeutic applications ; Ultrasonic imaging ; Ultrasound</subject><ispartof>Pediatric radiology, 2021-11, Vol.51 (12), p.2117-2127</ispartof><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</rights><rights>The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c451t-f77544ba48f49633f0e762c5ede1f53a97a05a79c80deb336ca63777ecb09a6a3</citedby><cites>FETCH-LOGICAL-c451t-f77544ba48f49633f0e762c5ede1f53a97a05a79c80deb336ca63777ecb09a6a3</cites><orcidid>0000-0002-9853-4873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00247-021-05080-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00247-021-05080-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,776,780,881,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Sridharan, Anush</creatorcontrib><creatorcontrib>Eisenbrey, John R.</creatorcontrib><creatorcontrib>Forsberg, Flemming</creatorcontrib><creatorcontrib>Lorenz, Norbert</creatorcontrib><creatorcontrib>Steffgen, Ludwig</creatorcontrib><creatorcontrib>Ntoulia, Aikaterini</creatorcontrib><title>Ultrasound contrast agents: microbubbles made simple for the pediatric radiologist</title><title>Pediatric radiology</title><addtitle>Pediatr Radiol</addtitle><description>The ability to provide prompt, real-time, easily accessible and radiation-free diagnostic assessments makes ultrasound (US) one of the most versatile imaging modalities. The introduction and development of stable microbubble-based ultrasound contrast agents (UCAs) in the early 1990s improved visualization of complex vascular structures, overcoming some of the limitations of B-mode and Doppler imaging. UCAs have been used extensively in the adult population to visualize vasculature and to evaluate perfusion and blood flow dynamics in organs and lesions. Since the first observations that air bubbles within a liquid can generate a strong echogenic effect, to the early makeshift approaches with agitated saline, and later to the development of industrially produced and federally approved UCAs, these agents have evolved to become both clinically and commercially viable. Perhaps the most exciting potential of UCAs is being uncovered by current research that explores the use of these agents for molecular imaging and therapeutic applications. As contrast-enhanced ultrasound (CEUS) becomes more widely available, it is important for pediatric radiologists to understand the physics of the interaction between the US signal and the microbubbles in order to properly utilize them for the highest level of diagnostic imaging and interventions. In this article we introduce the composition of UCAs and the physics of their behavior in US, and we offer a brief history of their development over the last decades.</description><subject>Air bubbles</subject><subject>Blood flow</subject><subject>Contrast agents</subject><subject>Contrast media</subject><subject>Contrast-enhanced ultrasound (CEUS) in children</subject><subject>Doppler effect</subject><subject>Imaging</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Neuroradiology</subject><subject>Nuclear Medicine</subject><subject>Oncology</subject><subject>Organs</subject><subject>Pediatrics</subject><subject>Perfusion</subject><subject>Radiology</subject><subject>Therapeutic applications</subject><subject>Ultrasonic imaging</subject><subject>Ultrasound</subject><issn>0301-0449</issn><issn>1432-1998</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kU9LHTEUxUOp1Kf2C3QVcNPN2Jt_k0kXgjyqLQiC6DpkMneekZnJazJT8Ns3r08qunB1L9zfOZzkEPKFwRkD0N8yAJe6As4qUNBAxT6QFZOCV8yY5iNZgYByktIckqOcHwFAKCY-kUMhGdON4Styez_MyeW4TB31cdrtM3UbnOb8nY7Bp9gubTtgpqPrkOYwbgekfUx0fkC6xS64OQVPk-tCHOIm5PmEHPRuyPj5eR6T-8sfd-uf1fXN1a_1xXXlpWJz1WutpGydbHppaiF6QF1zr7BD1ivhjHagnDa-gQ5bIWrvaqG1Rt-CcbUTx-R877td2hE7j7v0g92mMLr0ZKML9vVlCg92E_9Yw5uGNaIYfH02SPH3gnm2Y8geh8FNGJdsuZKgGOdmh56-QR_jkqbyvEIZrktyWReK76nybTkn7P-HYWB3ldl9ZbZUZv9VZlkRib0oF3jaYHqxfkf1F6mgmS0</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Sridharan, Anush</creator><creator>Eisenbrey, John R.</creator><creator>Forsberg, Flemming</creator><creator>Lorenz, Norbert</creator><creator>Steffgen, Ludwig</creator><creator>Ntoulia, Aikaterini</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7RV</scope><scope>7TK</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9853-4873</orcidid></search><sort><creationdate>20211101</creationdate><title>Ultrasound contrast agents: microbubbles made simple for the pediatric radiologist</title><author>Sridharan, Anush ; Eisenbrey, John R. ; Forsberg, Flemming ; Lorenz, Norbert ; Steffgen, Ludwig ; Ntoulia, Aikaterini</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c451t-f77544ba48f49633f0e762c5ede1f53a97a05a79c80deb336ca63777ecb09a6a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Air bubbles</topic><topic>Blood flow</topic><topic>Contrast agents</topic><topic>Contrast media</topic><topic>Contrast-enhanced ultrasound (CEUS) in children</topic><topic>Doppler effect</topic><topic>Imaging</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Neuroradiology</topic><topic>Nuclear Medicine</topic><topic>Oncology</topic><topic>Organs</topic><topic>Pediatrics</topic><topic>Perfusion</topic><topic>Radiology</topic><topic>Therapeutic applications</topic><topic>Ultrasonic imaging</topic><topic>Ultrasound</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sridharan, Anush</creatorcontrib><creatorcontrib>Eisenbrey, John R.</creatorcontrib><creatorcontrib>Forsberg, Flemming</creatorcontrib><creatorcontrib>Lorenz, Norbert</creatorcontrib><creatorcontrib>Steffgen, Ludwig</creatorcontrib><creatorcontrib>Ntoulia, Aikaterini</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Pediatric radiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sridharan, Anush</au><au>Eisenbrey, John R.</au><au>Forsberg, Flemming</au><au>Lorenz, Norbert</au><au>Steffgen, Ludwig</au><au>Ntoulia, Aikaterini</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ultrasound contrast agents: microbubbles made simple for the pediatric radiologist</atitle><jtitle>Pediatric radiology</jtitle><stitle>Pediatr Radiol</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>51</volume><issue>12</issue><spage>2117</spage><epage>2127</epage><pages>2117-2127</pages><issn>0301-0449</issn><eissn>1432-1998</eissn><abstract>The ability to provide prompt, real-time, easily accessible and radiation-free diagnostic assessments makes ultrasound (US) one of the most versatile imaging modalities. The introduction and development of stable microbubble-based ultrasound contrast agents (UCAs) in the early 1990s improved visualization of complex vascular structures, overcoming some of the limitations of B-mode and Doppler imaging. UCAs have been used extensively in the adult population to visualize vasculature and to evaluate perfusion and blood flow dynamics in organs and lesions. Since the first observations that air bubbles within a liquid can generate a strong echogenic effect, to the early makeshift approaches with agitated saline, and later to the development of industrially produced and federally approved UCAs, these agents have evolved to become both clinically and commercially viable. Perhaps the most exciting potential of UCAs is being uncovered by current research that explores the use of these agents for molecular imaging and therapeutic applications. As contrast-enhanced ultrasound (CEUS) becomes more widely available, it is important for pediatric radiologists to understand the physics of the interaction between the US signal and the microbubbles in order to properly utilize them for the highest level of diagnostic imaging and interventions. In this article we introduce the composition of UCAs and the physics of their behavior in US, and we offer a brief history of their development over the last decades.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>34117892</pmid><doi>10.1007/s00247-021-05080-1</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9853-4873</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0301-0449 |
ispartof | Pediatric radiology, 2021-11, Vol.51 (12), p.2117-2127 |
issn | 0301-0449 1432-1998 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9288183 |
source | Springer Online Journals Complete |
subjects | Air bubbles Blood flow Contrast agents Contrast media Contrast-enhanced ultrasound (CEUS) in children Doppler effect Imaging Medicine Medicine & Public Health Neuroradiology Nuclear Medicine Oncology Organs Pediatrics Perfusion Radiology Therapeutic applications Ultrasonic imaging Ultrasound |
title | Ultrasound contrast agents: microbubbles made simple for the pediatric radiologist |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ultrasound%20contrast%20agents:%20microbubbles%20made%20simple%20for%20the%20pediatric%20radiologist&rft.jtitle=Pediatric%20radiology&rft.au=Sridharan,%20Anush&rft.date=2021-11-01&rft.volume=51&rft.issue=12&rft.spage=2117&rft.epage=2127&rft.pages=2117-2127&rft.issn=0301-0449&rft.eissn=1432-1998&rft_id=info:doi/10.1007/s00247-021-05080-1&rft_dat=%3Cproquest_pubme%3E2592776246%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2592776246&rft_id=info:pmid/34117892&rfr_iscdi=true |