“Time window” effect of Yoda1‐evoked Piezo1 channel activity during mouse skeletal muscle differentiation
Aim Mechanosensitive Piezo1 ion channels emerged recently as important contributors to various vital functions including modulation of the blood supply to skeletal muscles. The specific Piezo1 channel agonist Yoda1 was shown to regulate the tone of blood vessels similarly to physical exercise. Howev...
Gespeichert in:
Veröffentlicht in: | Acta Physiologica 2021-12, Vol.233 (4), p.e13702-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 4 |
container_start_page | e13702 |
container_title | Acta Physiologica |
container_volume | 233 |
creator | Bosutti, Alessandra Giniatullin, Arthur Odnoshivkina, Yulia Giudice, Luca Malm, Tarja Sciancalepore, Marina Giniatullin, Rashid D'Andrea, Paola Lorenzon, Paola Bernareggi, Annalisa |
description | Aim
Mechanosensitive Piezo1 ion channels emerged recently as important contributors to various vital functions including modulation of the blood supply to skeletal muscles. The specific Piezo1 channel agonist Yoda1 was shown to regulate the tone of blood vessels similarly to physical exercise. However, the direct role of Piezo1 channels in muscle function has been little studied so far. We therefore investigated the action of Yoda1 on the functional state of skeletal muscle precursors (satellite cells and myotubes) and on adult muscle fibres.
Methods
Immunostaining, electrophysiological intracellular recordings and Ca2+ imaging experiments were performed to localize and assess the effect of the chemical activation of Piezo1 channels with Yoda1, on myogenic precursors, adult myofibres and at the adult neuromuscular junction.
Results
Piezo1 channels were detected by immunostaining in satellite cells (SCs) and myotubes as well as in adult myofibres. In the skeletal muscle precursors, Yoda1 treatment stimulated the differentiation and cell fusion rather than the proliferation of SCs. Moreover, in myotubes, Yoda1 induced significant [Ca2+]i transients, without detectable [Ca2+]i response in adult myofibres. Furthermore, although expression of Piezo1 channels was detected around the muscle endplate region, Yoda1 application did not alter either the nerve‐evoked or spontaneous synaptic activity or muscle contractions in adult myofibres.
Conclusion
Our data indicate that the chemical activation of Piezo1 channels specifically enhances the differentiation of skeletal muscle precursors, suggesting a possible new strategy to promote muscle regeneration. |
doi_str_mv | 10.1111/apha.13702 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9286833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2611864682</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4482-59e693ce716944a614d56d787ffe9f25802f2c6d0e255d0135ca3a284d973ea13</originalsourceid><addsrcrecordid>eNp9kcFqFDEcxgdRbGl78QEk4EWEbfNPMpnkIixFW6HQHurBU4jJf7ppZybrZGaX9bSP0AfQl9snMe3WRT2YSwL58eP7-IriFdBjyOfEzmf2GHhF2bNiHyqhJlCBfL57U7VXHKV0SykFBlww9rLY44LqSlHYL-Jm_eM6tEiWofNxuVn_JFjX6AYSa_Ilegub9T0u4h16chXwewTiZrbrsCHWDWERhhXxYx-6G9LGMSFJd9jgYBvSjsk1SHzIuh67IdghxO6weFHbJuHR031QfP744fr0fHJxefbpdHoxcUIoNik1Ss0d5ipaCCtB-FL6SlVZpmtWKspq5qSnyMrSU-Cls9wyJbyuOFrgB8X7rXc-fm3Ruxygt42Z96G1_cpEG8zfP12YmZu4MJopqTjPgrdPgj5-GzENpg3JYdPYDnNRw0quGS2B6Yy--Qe9jWPf5XqGSQAlhVQsU--2lOtjSj3WuzBAzcOU5mFK8zhlhl__GX-H_h4uA7AFlqHB1X9UZnp1Pt1KfwHJ4qy4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2611864682</pqid></control><display><type>article</type><title>“Time window” effect of Yoda1‐evoked Piezo1 channel activity during mouse skeletal muscle differentiation</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Bosutti, Alessandra ; Giniatullin, Arthur ; Odnoshivkina, Yulia ; Giudice, Luca ; Malm, Tarja ; Sciancalepore, Marina ; Giniatullin, Rashid ; D'Andrea, Paola ; Lorenzon, Paola ; Bernareggi, Annalisa</creator><creatorcontrib>Bosutti, Alessandra ; Giniatullin, Arthur ; Odnoshivkina, Yulia ; Giudice, Luca ; Malm, Tarja ; Sciancalepore, Marina ; Giniatullin, Rashid ; D'Andrea, Paola ; Lorenzon, Paola ; Bernareggi, Annalisa</creatorcontrib><description>Aim
Mechanosensitive Piezo1 ion channels emerged recently as important contributors to various vital functions including modulation of the blood supply to skeletal muscles. The specific Piezo1 channel agonist Yoda1 was shown to regulate the tone of blood vessels similarly to physical exercise. However, the direct role of Piezo1 channels in muscle function has been little studied so far. We therefore investigated the action of Yoda1 on the functional state of skeletal muscle precursors (satellite cells and myotubes) and on adult muscle fibres.
Methods
Immunostaining, electrophysiological intracellular recordings and Ca2+ imaging experiments were performed to localize and assess the effect of the chemical activation of Piezo1 channels with Yoda1, on myogenic precursors, adult myofibres and at the adult neuromuscular junction.
Results
Piezo1 channels were detected by immunostaining in satellite cells (SCs) and myotubes as well as in adult myofibres. In the skeletal muscle precursors, Yoda1 treatment stimulated the differentiation and cell fusion rather than the proliferation of SCs. Moreover, in myotubes, Yoda1 induced significant [Ca2+]i transients, without detectable [Ca2+]i response in adult myofibres. Furthermore, although expression of Piezo1 channels was detected around the muscle endplate region, Yoda1 application did not alter either the nerve‐evoked or spontaneous synaptic activity or muscle contractions in adult myofibres.
Conclusion
Our data indicate that the chemical activation of Piezo1 channels specifically enhances the differentiation of skeletal muscle precursors, suggesting a possible new strategy to promote muscle regeneration.</description><identifier>ISSN: 1748-1708</identifier><identifier>EISSN: 1748-1716</identifier><identifier>DOI: 10.1111/apha.13702</identifier><identifier>PMID: 34097801</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Animals ; Biological Transport ; Blood vessels ; Calcium (intracellular) ; Calcium imaging ; Cell Differentiation ; Cell fusion ; Channel gating ; Ion channels ; Ion Channels - metabolism ; Mice ; Muscle contraction ; Muscle Physiology ; Muscle, Skeletal - metabolism ; Musculoskeletal system ; myogenesis ; Myotubes ; Piezo1 channels ; Regeneration ; Satellite cells ; Skeletal muscle ; skeletal muscle myofibres ; Yoda1</subject><ispartof>Acta Physiologica, 2021-12, Vol.233 (4), p.e13702-n/a</ispartof><rights>2021 The Authors. published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society</rights><rights>2021 The Authors. Acta Physiologica published by John Wiley & Sons Ltd on behalf of Scandinavian Physiological Society.</rights><rights>2021. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4482-59e693ce716944a614d56d787ffe9f25802f2c6d0e255d0135ca3a284d973ea13</citedby><cites>FETCH-LOGICAL-c4482-59e693ce716944a614d56d787ffe9f25802f2c6d0e255d0135ca3a284d973ea13</cites><orcidid>0000-0002-9526-6471 ; 0000-0002-7007-8466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fapha.13702$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fapha.13702$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34097801$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bosutti, Alessandra</creatorcontrib><creatorcontrib>Giniatullin, Arthur</creatorcontrib><creatorcontrib>Odnoshivkina, Yulia</creatorcontrib><creatorcontrib>Giudice, Luca</creatorcontrib><creatorcontrib>Malm, Tarja</creatorcontrib><creatorcontrib>Sciancalepore, Marina</creatorcontrib><creatorcontrib>Giniatullin, Rashid</creatorcontrib><creatorcontrib>D'Andrea, Paola</creatorcontrib><creatorcontrib>Lorenzon, Paola</creatorcontrib><creatorcontrib>Bernareggi, Annalisa</creatorcontrib><title>“Time window” effect of Yoda1‐evoked Piezo1 channel activity during mouse skeletal muscle differentiation</title><title>Acta Physiologica</title><addtitle>Acta Physiol (Oxf)</addtitle><description>Aim
Mechanosensitive Piezo1 ion channels emerged recently as important contributors to various vital functions including modulation of the blood supply to skeletal muscles. The specific Piezo1 channel agonist Yoda1 was shown to regulate the tone of blood vessels similarly to physical exercise. However, the direct role of Piezo1 channels in muscle function has been little studied so far. We therefore investigated the action of Yoda1 on the functional state of skeletal muscle precursors (satellite cells and myotubes) and on adult muscle fibres.
Methods
Immunostaining, electrophysiological intracellular recordings and Ca2+ imaging experiments were performed to localize and assess the effect of the chemical activation of Piezo1 channels with Yoda1, on myogenic precursors, adult myofibres and at the adult neuromuscular junction.
Results
Piezo1 channels were detected by immunostaining in satellite cells (SCs) and myotubes as well as in adult myofibres. In the skeletal muscle precursors, Yoda1 treatment stimulated the differentiation and cell fusion rather than the proliferation of SCs. Moreover, in myotubes, Yoda1 induced significant [Ca2+]i transients, without detectable [Ca2+]i response in adult myofibres. Furthermore, although expression of Piezo1 channels was detected around the muscle endplate region, Yoda1 application did not alter either the nerve‐evoked or spontaneous synaptic activity or muscle contractions in adult myofibres.
Conclusion
Our data indicate that the chemical activation of Piezo1 channels specifically enhances the differentiation of skeletal muscle precursors, suggesting a possible new strategy to promote muscle regeneration.</description><subject>Animals</subject><subject>Biological Transport</subject><subject>Blood vessels</subject><subject>Calcium (intracellular)</subject><subject>Calcium imaging</subject><subject>Cell Differentiation</subject><subject>Cell fusion</subject><subject>Channel gating</subject><subject>Ion channels</subject><subject>Ion Channels - metabolism</subject><subject>Mice</subject><subject>Muscle contraction</subject><subject>Muscle Physiology</subject><subject>Muscle, Skeletal - metabolism</subject><subject>Musculoskeletal system</subject><subject>myogenesis</subject><subject>Myotubes</subject><subject>Piezo1 channels</subject><subject>Regeneration</subject><subject>Satellite cells</subject><subject>Skeletal muscle</subject><subject>skeletal muscle myofibres</subject><subject>Yoda1</subject><issn>1748-1708</issn><issn>1748-1716</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>EIF</sourceid><recordid>eNp9kcFqFDEcxgdRbGl78QEk4EWEbfNPMpnkIixFW6HQHurBU4jJf7ppZybrZGaX9bSP0AfQl9snMe3WRT2YSwL58eP7-IriFdBjyOfEzmf2GHhF2bNiHyqhJlCBfL57U7VXHKV0SykFBlww9rLY44LqSlHYL-Jm_eM6tEiWofNxuVn_JFjX6AYSa_Ilegub9T0u4h16chXwewTiZrbrsCHWDWERhhXxYx-6G9LGMSFJd9jgYBvSjsk1SHzIuh67IdghxO6weFHbJuHR031QfP744fr0fHJxefbpdHoxcUIoNik1Ss0d5ipaCCtB-FL6SlVZpmtWKspq5qSnyMrSU-Cls9wyJbyuOFrgB8X7rXc-fm3Ruxygt42Z96G1_cpEG8zfP12YmZu4MJopqTjPgrdPgj5-GzENpg3JYdPYDnNRw0quGS2B6Yy--Qe9jWPf5XqGSQAlhVQsU--2lOtjSj3WuzBAzcOU5mFK8zhlhl__GX-H_h4uA7AFlqHB1X9UZnp1Pt1KfwHJ4qy4</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Bosutti, Alessandra</creator><creator>Giniatullin, Arthur</creator><creator>Odnoshivkina, Yulia</creator><creator>Giudice, Luca</creator><creator>Malm, Tarja</creator><creator>Sciancalepore, Marina</creator><creator>Giniatullin, Rashid</creator><creator>D'Andrea, Paola</creator><creator>Lorenzon, Paola</creator><creator>Bernareggi, Annalisa</creator><general>Wiley Subscription Services, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9526-6471</orcidid><orcidid>https://orcid.org/0000-0002-7007-8466</orcidid></search><sort><creationdate>202112</creationdate><title>“Time window” effect of Yoda1‐evoked Piezo1 channel activity during mouse skeletal muscle differentiation</title><author>Bosutti, Alessandra ; Giniatullin, Arthur ; Odnoshivkina, Yulia ; Giudice, Luca ; Malm, Tarja ; Sciancalepore, Marina ; Giniatullin, Rashid ; D'Andrea, Paola ; Lorenzon, Paola ; Bernareggi, Annalisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4482-59e693ce716944a614d56d787ffe9f25802f2c6d0e255d0135ca3a284d973ea13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Animals</topic><topic>Biological Transport</topic><topic>Blood vessels</topic><topic>Calcium (intracellular)</topic><topic>Calcium imaging</topic><topic>Cell Differentiation</topic><topic>Cell fusion</topic><topic>Channel gating</topic><topic>Ion channels</topic><topic>Ion Channels - metabolism</topic><topic>Mice</topic><topic>Muscle contraction</topic><topic>Muscle Physiology</topic><topic>Muscle, Skeletal - metabolism</topic><topic>Musculoskeletal system</topic><topic>myogenesis</topic><topic>Myotubes</topic><topic>Piezo1 channels</topic><topic>Regeneration</topic><topic>Satellite cells</topic><topic>Skeletal muscle</topic><topic>skeletal muscle myofibres</topic><topic>Yoda1</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bosutti, Alessandra</creatorcontrib><creatorcontrib>Giniatullin, Arthur</creatorcontrib><creatorcontrib>Odnoshivkina, Yulia</creatorcontrib><creatorcontrib>Giudice, Luca</creatorcontrib><creatorcontrib>Malm, Tarja</creatorcontrib><creatorcontrib>Sciancalepore, Marina</creatorcontrib><creatorcontrib>Giniatullin, Rashid</creatorcontrib><creatorcontrib>D'Andrea, Paola</creatorcontrib><creatorcontrib>Lorenzon, Paola</creatorcontrib><creatorcontrib>Bernareggi, Annalisa</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Free Content</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Physical Education Index</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Acta Physiologica</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bosutti, Alessandra</au><au>Giniatullin, Arthur</au><au>Odnoshivkina, Yulia</au><au>Giudice, Luca</au><au>Malm, Tarja</au><au>Sciancalepore, Marina</au><au>Giniatullin, Rashid</au><au>D'Andrea, Paola</au><au>Lorenzon, Paola</au><au>Bernareggi, Annalisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>“Time window” effect of Yoda1‐evoked Piezo1 channel activity during mouse skeletal muscle differentiation</atitle><jtitle>Acta Physiologica</jtitle><addtitle>Acta Physiol (Oxf)</addtitle><date>2021-12</date><risdate>2021</risdate><volume>233</volume><issue>4</issue><spage>e13702</spage><epage>n/a</epage><pages>e13702-n/a</pages><issn>1748-1708</issn><eissn>1748-1716</eissn><abstract>Aim
Mechanosensitive Piezo1 ion channels emerged recently as important contributors to various vital functions including modulation of the blood supply to skeletal muscles. The specific Piezo1 channel agonist Yoda1 was shown to regulate the tone of blood vessels similarly to physical exercise. However, the direct role of Piezo1 channels in muscle function has been little studied so far. We therefore investigated the action of Yoda1 on the functional state of skeletal muscle precursors (satellite cells and myotubes) and on adult muscle fibres.
Methods
Immunostaining, electrophysiological intracellular recordings and Ca2+ imaging experiments were performed to localize and assess the effect of the chemical activation of Piezo1 channels with Yoda1, on myogenic precursors, adult myofibres and at the adult neuromuscular junction.
Results
Piezo1 channels were detected by immunostaining in satellite cells (SCs) and myotubes as well as in adult myofibres. In the skeletal muscle precursors, Yoda1 treatment stimulated the differentiation and cell fusion rather than the proliferation of SCs. Moreover, in myotubes, Yoda1 induced significant [Ca2+]i transients, without detectable [Ca2+]i response in adult myofibres. Furthermore, although expression of Piezo1 channels was detected around the muscle endplate region, Yoda1 application did not alter either the nerve‐evoked or spontaneous synaptic activity or muscle contractions in adult myofibres.
Conclusion
Our data indicate that the chemical activation of Piezo1 channels specifically enhances the differentiation of skeletal muscle precursors, suggesting a possible new strategy to promote muscle regeneration.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>34097801</pmid><doi>10.1111/apha.13702</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-9526-6471</orcidid><orcidid>https://orcid.org/0000-0002-7007-8466</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1748-1708 |
ispartof | Acta Physiologica, 2021-12, Vol.233 (4), p.e13702-n/a |
issn | 1748-1708 1748-1716 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9286833 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete |
subjects | Animals Biological Transport Blood vessels Calcium (intracellular) Calcium imaging Cell Differentiation Cell fusion Channel gating Ion channels Ion Channels - metabolism Mice Muscle contraction Muscle Physiology Muscle, Skeletal - metabolism Musculoskeletal system myogenesis Myotubes Piezo1 channels Regeneration Satellite cells Skeletal muscle skeletal muscle myofibres Yoda1 |
title | “Time window” effect of Yoda1‐evoked Piezo1 channel activity during mouse skeletal muscle differentiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T14%3A25%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%E2%80%9CTime%20window%E2%80%9D%20effect%20of%20Yoda1%E2%80%90evoked%20Piezo1%20channel%20activity%20during%20mouse%20skeletal%20muscle%20differentiation&rft.jtitle=Acta%20Physiologica&rft.au=Bosutti,%20Alessandra&rft.date=2021-12&rft.volume=233&rft.issue=4&rft.spage=e13702&rft.epage=n/a&rft.pages=e13702-n/a&rft.issn=1748-1708&rft.eissn=1748-1716&rft_id=info:doi/10.1111/apha.13702&rft_dat=%3Cproquest_pubme%3E2611864682%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2611864682&rft_id=info:pmid/34097801&rfr_iscdi=true |