High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy
Raman spectroscopy enables nondestructive, label-free imaging with unprecedented molecular contrast, but is limited by slow data acquisition, largely preventing high-throughput imaging applications. Here, we present a comprehensive framework for higher-throughput molecular imaging via deep-learning-...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2021-12, Vol.93 (48), p.15850-15860 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15860 |
---|---|
container_issue | 48 |
container_start_page | 15850 |
container_title | Analytical chemistry (Washington) |
container_volume | 93 |
creator | Horgan, Conor C Jensen, Magnus Nagelkerke, Anika St-Pierre, Jean-Philippe Vercauteren, Tom Stevens, Molly M Bergholt, Mads S |
description | Raman spectroscopy enables nondestructive, label-free imaging with unprecedented molecular contrast, but is limited by slow data acquisition, largely preventing high-throughput imaging applications. Here, we present a comprehensive framework for higher-throughput molecular imaging via deep-learning-enabled Raman spectroscopy, termed DeepeR, trained on a large data set of hyperspectral Raman images, with over 1.5 million spectra (400 h of acquisition) in total. We first perform denoising and reconstruction of low signal-to-noise ratio Raman molecular signatures via deep learning, with a 10× improvement in the mean-squared error over common Raman filtering methods. Next, we develop a neural network for robust 2–4× spatial super-resolution of hyperspectral Raman images that preserve molecular cellular information. Combining these approaches, we achieve Raman imaging speed-ups of up to 40–90×, enabling good-quality cellular imaging with a high-resolution, high signal-to-noise ratio in under 1 min. We further demonstrate Raman imaging speed-up of 160×, useful for lower resolution imaging applications such as the rapid screening of large areas or for spectral pathology. Finally, transfer learning is applied to extend DeepeR from cell to tissue-scale imaging. DeepeR provides a foundation that will enable a host of higher-throughput Raman spectroscopy and molecular imaging applications across biomedicine. |
doi_str_mv | 10.1021/acs.analchem.1c02178 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9286315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616229445</sourcerecordid><originalsourceid>FETCH-LOGICAL-a477t-e7c725e3f1f09b3fb377247dbc7dfe004ff2927238cc223a76c516f2c252f443</originalsourceid><addsrcrecordid>eNp9kUFr3DAUhEVpaLZJ_0EIhl568fbpSbbsSyCkSRPYtJDuXchayXawLUeyA_n30bKbJe2h6CB4-mYkzRByRmFJAel3pcNSDarTjemXVMeRKD6QBc0Q0rwo8CNZAABLUQAck88hPAJQCjT_RI4ZF2VcuCC_btu6SdeNd3PdjPOU3LvO6LlTPrnrVd0OdfLcquSHMWO6MsoPcZJeD6rqzCZ5UL0akj-j0ZN3Qbvx5ZQcWdUF82W_n5D1zfX66jZd_f55d3W5ShUXYkqN0AIzwyy1UFbMVkwI5GJTabGxBoBbiyUKZIXWiEyJXGc0t6gxQ8s5OyEXO9txrnqz0WaYvOrk6Nte-RfpVCv_PhnaRtbuWZZY5Ixm0eDb3sC7p9mESfZt0Kbr1GDcHCTmAFhkMbCIfv0HfXSzj8FvKZojlpxvDfmO0jGJ4I09PIaC3PYlY1_yrS-57yvKzt9_5CB6KygCsAO28sPF__V8BQOHpS8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616229445</pqid></control><display><type>article</type><title>High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy</title><source>MEDLINE</source><source>ACS Publications</source><creator>Horgan, Conor C ; Jensen, Magnus ; Nagelkerke, Anika ; St-Pierre, Jean-Philippe ; Vercauteren, Tom ; Stevens, Molly M ; Bergholt, Mads S</creator><creatorcontrib>Horgan, Conor C ; Jensen, Magnus ; Nagelkerke, Anika ; St-Pierre, Jean-Philippe ; Vercauteren, Tom ; Stevens, Molly M ; Bergholt, Mads S</creatorcontrib><description>Raman spectroscopy enables nondestructive, label-free imaging with unprecedented molecular contrast, but is limited by slow data acquisition, largely preventing high-throughput imaging applications. Here, we present a comprehensive framework for higher-throughput molecular imaging via deep-learning-enabled Raman spectroscopy, termed DeepeR, trained on a large data set of hyperspectral Raman images, with over 1.5 million spectra (400 h of acquisition) in total. We first perform denoising and reconstruction of low signal-to-noise ratio Raman molecular signatures via deep learning, with a 10× improvement in the mean-squared error over common Raman filtering methods. Next, we develop a neural network for robust 2–4× spatial super-resolution of hyperspectral Raman images that preserve molecular cellular information. Combining these approaches, we achieve Raman imaging speed-ups of up to 40–90×, enabling good-quality cellular imaging with a high-resolution, high signal-to-noise ratio in under 1 min. We further demonstrate Raman imaging speed-up of 160×, useful for lower resolution imaging applications such as the rapid screening of large areas or for spectral pathology. Finally, transfer learning is applied to extend DeepeR from cell to tissue-scale imaging. DeepeR provides a foundation that will enable a host of higher-throughput Raman spectroscopy and molecular imaging applications across biomedicine.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.1c02178</identifier><identifier>PMID: 34797972</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Data acquisition ; Deep Learning ; Image acquisition ; Image reconstruction ; Image resolution ; Molecular Imaging ; Neural networks ; Neural Networks, Computer ; Raman spectroscopy ; Signal to noise ratio ; Spectroscopy ; Spectrum analysis ; Spectrum Analysis, Raman ; Transfer learning</subject><ispartof>Analytical chemistry (Washington), 2021-12, Vol.93 (48), p.15850-15860</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Dec 7, 2021</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a477t-e7c725e3f1f09b3fb377247dbc7dfe004ff2927238cc223a76c516f2c252f443</citedby><cites>FETCH-LOGICAL-a477t-e7c725e3f1f09b3fb377247dbc7dfe004ff2927238cc223a76c516f2c252f443</cites><orcidid>0000-0003-3986-8942 ; 0000-0002-7335-266X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.1c02178$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.1c02178$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34797972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horgan, Conor C</creatorcontrib><creatorcontrib>Jensen, Magnus</creatorcontrib><creatorcontrib>Nagelkerke, Anika</creatorcontrib><creatorcontrib>St-Pierre, Jean-Philippe</creatorcontrib><creatorcontrib>Vercauteren, Tom</creatorcontrib><creatorcontrib>Stevens, Molly M</creatorcontrib><creatorcontrib>Bergholt, Mads S</creatorcontrib><title>High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Raman spectroscopy enables nondestructive, label-free imaging with unprecedented molecular contrast, but is limited by slow data acquisition, largely preventing high-throughput imaging applications. Here, we present a comprehensive framework for higher-throughput molecular imaging via deep-learning-enabled Raman spectroscopy, termed DeepeR, trained on a large data set of hyperspectral Raman images, with over 1.5 million spectra (400 h of acquisition) in total. We first perform denoising and reconstruction of low signal-to-noise ratio Raman molecular signatures via deep learning, with a 10× improvement in the mean-squared error over common Raman filtering methods. Next, we develop a neural network for robust 2–4× spatial super-resolution of hyperspectral Raman images that preserve molecular cellular information. Combining these approaches, we achieve Raman imaging speed-ups of up to 40–90×, enabling good-quality cellular imaging with a high-resolution, high signal-to-noise ratio in under 1 min. We further demonstrate Raman imaging speed-up of 160×, useful for lower resolution imaging applications such as the rapid screening of large areas or for spectral pathology. Finally, transfer learning is applied to extend DeepeR from cell to tissue-scale imaging. DeepeR provides a foundation that will enable a host of higher-throughput Raman spectroscopy and molecular imaging applications across biomedicine.</description><subject>Chemistry</subject><subject>Data acquisition</subject><subject>Deep Learning</subject><subject>Image acquisition</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Molecular Imaging</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Raman spectroscopy</subject><subject>Signal to noise ratio</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman</subject><subject>Transfer learning</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFr3DAUhEVpaLZJ_0EIhl568fbpSbbsSyCkSRPYtJDuXchayXawLUeyA_n30bKbJe2h6CB4-mYkzRByRmFJAel3pcNSDarTjemXVMeRKD6QBc0Q0rwo8CNZAABLUQAck88hPAJQCjT_RI4ZF2VcuCC_btu6SdeNd3PdjPOU3LvO6LlTPrnrVd0OdfLcquSHMWO6MsoPcZJeD6rqzCZ5UL0akj-j0ZN3Qbvx5ZQcWdUF82W_n5D1zfX66jZd_f55d3W5ShUXYkqN0AIzwyy1UFbMVkwI5GJTabGxBoBbiyUKZIXWiEyJXGc0t6gxQ8s5OyEXO9txrnqz0WaYvOrk6Nte-RfpVCv_PhnaRtbuWZZY5Ixm0eDb3sC7p9mESfZt0Kbr1GDcHCTmAFhkMbCIfv0HfXSzj8FvKZojlpxvDfmO0jGJ4I09PIaC3PYlY1_yrS-57yvKzt9_5CB6KygCsAO28sPF__V8BQOHpS8</recordid><startdate>20211207</startdate><enddate>20211207</enddate><creator>Horgan, Conor C</creator><creator>Jensen, Magnus</creator><creator>Nagelkerke, Anika</creator><creator>St-Pierre, Jean-Philippe</creator><creator>Vercauteren, Tom</creator><creator>Stevens, Molly M</creator><creator>Bergholt, Mads S</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3986-8942</orcidid><orcidid>https://orcid.org/0000-0002-7335-266X</orcidid></search><sort><creationdate>20211207</creationdate><title>High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy</title><author>Horgan, Conor C ; Jensen, Magnus ; Nagelkerke, Anika ; St-Pierre, Jean-Philippe ; Vercauteren, Tom ; Stevens, Molly M ; Bergholt, Mads S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a477t-e7c725e3f1f09b3fb377247dbc7dfe004ff2927238cc223a76c516f2c252f443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Data acquisition</topic><topic>Deep Learning</topic><topic>Image acquisition</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Molecular Imaging</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Raman spectroscopy</topic><topic>Signal to noise ratio</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horgan, Conor C</creatorcontrib><creatorcontrib>Jensen, Magnus</creatorcontrib><creatorcontrib>Nagelkerke, Anika</creatorcontrib><creatorcontrib>St-Pierre, Jean-Philippe</creatorcontrib><creatorcontrib>Vercauteren, Tom</creatorcontrib><creatorcontrib>Stevens, Molly M</creatorcontrib><creatorcontrib>Bergholt, Mads S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horgan, Conor C</au><au>Jensen, Magnus</au><au>Nagelkerke, Anika</au><au>St-Pierre, Jean-Philippe</au><au>Vercauteren, Tom</au><au>Stevens, Molly M</au><au>Bergholt, Mads S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2021-12-07</date><risdate>2021</risdate><volume>93</volume><issue>48</issue><spage>15850</spage><epage>15860</epage><pages>15850-15860</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><abstract>Raman spectroscopy enables nondestructive, label-free imaging with unprecedented molecular contrast, but is limited by slow data acquisition, largely preventing high-throughput imaging applications. Here, we present a comprehensive framework for higher-throughput molecular imaging via deep-learning-enabled Raman spectroscopy, termed DeepeR, trained on a large data set of hyperspectral Raman images, with over 1.5 million spectra (400 h of acquisition) in total. We first perform denoising and reconstruction of low signal-to-noise ratio Raman molecular signatures via deep learning, with a 10× improvement in the mean-squared error over common Raman filtering methods. Next, we develop a neural network for robust 2–4× spatial super-resolution of hyperspectral Raman images that preserve molecular cellular information. Combining these approaches, we achieve Raman imaging speed-ups of up to 40–90×, enabling good-quality cellular imaging with a high-resolution, high signal-to-noise ratio in under 1 min. We further demonstrate Raman imaging speed-up of 160×, useful for lower resolution imaging applications such as the rapid screening of large areas or for spectral pathology. Finally, transfer learning is applied to extend DeepeR from cell to tissue-scale imaging. DeepeR provides a foundation that will enable a host of higher-throughput Raman spectroscopy and molecular imaging applications across biomedicine.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34797972</pmid><doi>10.1021/acs.analchem.1c02178</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3986-8942</orcidid><orcidid>https://orcid.org/0000-0002-7335-266X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2021-12, Vol.93 (48), p.15850-15860 |
issn | 0003-2700 1520-6882 1520-6882 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9286315 |
source | MEDLINE; ACS Publications |
subjects | Chemistry Data acquisition Deep Learning Image acquisition Image reconstruction Image resolution Molecular Imaging Neural networks Neural Networks, Computer Raman spectroscopy Signal to noise ratio Spectroscopy Spectrum analysis Spectrum Analysis, Raman Transfer learning |
title | High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Throughput%20Molecular%20Imaging%20via%20Deep-Learning-Enabled%20Raman%20Spectroscopy&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Horgan,%20Conor%20C&rft.date=2021-12-07&rft.volume=93&rft.issue=48&rft.spage=15850&rft.epage=15860&rft.pages=15850-15860&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.1c02178&rft_dat=%3Cproquest_pubme%3E2616229445%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616229445&rft_id=info:pmid/34797972&rfr_iscdi=true |