High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy

Raman spectroscopy enables nondestructive, label-free imaging with unprecedented molecular contrast, but is limited by slow data acquisition, largely preventing high-throughput imaging applications. Here, we present a comprehensive framework for higher-throughput molecular imaging via deep-learning-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2021-12, Vol.93 (48), p.15850-15860
Hauptverfasser: Horgan, Conor C, Jensen, Magnus, Nagelkerke, Anika, St-Pierre, Jean-Philippe, Vercauteren, Tom, Stevens, Molly M, Bergholt, Mads S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15860
container_issue 48
container_start_page 15850
container_title Analytical chemistry (Washington)
container_volume 93
creator Horgan, Conor C
Jensen, Magnus
Nagelkerke, Anika
St-Pierre, Jean-Philippe
Vercauteren, Tom
Stevens, Molly M
Bergholt, Mads S
description Raman spectroscopy enables nondestructive, label-free imaging with unprecedented molecular contrast, but is limited by slow data acquisition, largely preventing high-throughput imaging applications. Here, we present a comprehensive framework for higher-throughput molecular imaging via deep-learning-enabled Raman spectroscopy, termed DeepeR, trained on a large data set of hyperspectral Raman images, with over 1.5 million spectra (400 h of acquisition) in total. We first perform denoising and reconstruction of low signal-to-noise ratio Raman molecular signatures via deep learning, with a 10× improvement in the mean-squared error over common Raman filtering methods. Next, we develop a neural network for robust 2–4× spatial super-resolution of hyperspectral Raman images that preserve molecular cellular information. Combining these approaches, we achieve Raman imaging speed-ups of up to 40–90×, enabling good-quality cellular imaging with a high-resolution, high signal-to-noise ratio in under 1 min. We further demonstrate Raman imaging speed-up of 160×, useful for lower resolution imaging applications such as the rapid screening of large areas or for spectral pathology. Finally, transfer learning is applied to extend DeepeR from cell to tissue-scale imaging. DeepeR provides a foundation that will enable a host of higher-throughput Raman spectroscopy and molecular imaging applications across biomedicine.
doi_str_mv 10.1021/acs.analchem.1c02178
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9286315</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2616229445</sourcerecordid><originalsourceid>FETCH-LOGICAL-a477t-e7c725e3f1f09b3fb377247dbc7dfe004ff2927238cc223a76c516f2c252f443</originalsourceid><addsrcrecordid>eNp9kUFr3DAUhEVpaLZJ_0EIhl568fbpSbbsSyCkSRPYtJDuXchayXawLUeyA_n30bKbJe2h6CB4-mYkzRByRmFJAel3pcNSDarTjemXVMeRKD6QBc0Q0rwo8CNZAABLUQAck88hPAJQCjT_RI4ZF2VcuCC_btu6SdeNd3PdjPOU3LvO6LlTPrnrVd0OdfLcquSHMWO6MsoPcZJeD6rqzCZ5UL0akj-j0ZN3Qbvx5ZQcWdUF82W_n5D1zfX66jZd_f55d3W5ShUXYkqN0AIzwyy1UFbMVkwI5GJTabGxBoBbiyUKZIXWiEyJXGc0t6gxQ8s5OyEXO9txrnqz0WaYvOrk6Nte-RfpVCv_PhnaRtbuWZZY5Ixm0eDb3sC7p9mESfZt0Kbr1GDcHCTmAFhkMbCIfv0HfXSzj8FvKZojlpxvDfmO0jGJ4I09PIaC3PYlY1_yrS-57yvKzt9_5CB6KygCsAO28sPF__V8BQOHpS8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616229445</pqid></control><display><type>article</type><title>High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy</title><source>MEDLINE</source><source>ACS Publications</source><creator>Horgan, Conor C ; Jensen, Magnus ; Nagelkerke, Anika ; St-Pierre, Jean-Philippe ; Vercauteren, Tom ; Stevens, Molly M ; Bergholt, Mads S</creator><creatorcontrib>Horgan, Conor C ; Jensen, Magnus ; Nagelkerke, Anika ; St-Pierre, Jean-Philippe ; Vercauteren, Tom ; Stevens, Molly M ; Bergholt, Mads S</creatorcontrib><description>Raman spectroscopy enables nondestructive, label-free imaging with unprecedented molecular contrast, but is limited by slow data acquisition, largely preventing high-throughput imaging applications. Here, we present a comprehensive framework for higher-throughput molecular imaging via deep-learning-enabled Raman spectroscopy, termed DeepeR, trained on a large data set of hyperspectral Raman images, with over 1.5 million spectra (400 h of acquisition) in total. We first perform denoising and reconstruction of low signal-to-noise ratio Raman molecular signatures via deep learning, with a 10× improvement in the mean-squared error over common Raman filtering methods. Next, we develop a neural network for robust 2–4× spatial super-resolution of hyperspectral Raman images that preserve molecular cellular information. Combining these approaches, we achieve Raman imaging speed-ups of up to 40–90×, enabling good-quality cellular imaging with a high-resolution, high signal-to-noise ratio in under 1 min. We further demonstrate Raman imaging speed-up of 160×, useful for lower resolution imaging applications such as the rapid screening of large areas or for spectral pathology. Finally, transfer learning is applied to extend DeepeR from cell to tissue-scale imaging. DeepeR provides a foundation that will enable a host of higher-throughput Raman spectroscopy and molecular imaging applications across biomedicine.</description><identifier>ISSN: 0003-2700</identifier><identifier>ISSN: 1520-6882</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.1c02178</identifier><identifier>PMID: 34797972</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Chemistry ; Data acquisition ; Deep Learning ; Image acquisition ; Image reconstruction ; Image resolution ; Molecular Imaging ; Neural networks ; Neural Networks, Computer ; Raman spectroscopy ; Signal to noise ratio ; Spectroscopy ; Spectrum analysis ; Spectrum Analysis, Raman ; Transfer learning</subject><ispartof>Analytical chemistry (Washington), 2021-12, Vol.93 (48), p.15850-15860</ispartof><rights>2021 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Dec 7, 2021</rights><rights>2021 The Authors. Published by American Chemical Society 2021 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a477t-e7c725e3f1f09b3fb377247dbc7dfe004ff2927238cc223a76c516f2c252f443</citedby><cites>FETCH-LOGICAL-a477t-e7c725e3f1f09b3fb377247dbc7dfe004ff2927238cc223a76c516f2c252f443</cites><orcidid>0000-0003-3986-8942 ; 0000-0002-7335-266X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.1c02178$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.1c02178$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2751,27055,27903,27904,56717,56767</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34797972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Horgan, Conor C</creatorcontrib><creatorcontrib>Jensen, Magnus</creatorcontrib><creatorcontrib>Nagelkerke, Anika</creatorcontrib><creatorcontrib>St-Pierre, Jean-Philippe</creatorcontrib><creatorcontrib>Vercauteren, Tom</creatorcontrib><creatorcontrib>Stevens, Molly M</creatorcontrib><creatorcontrib>Bergholt, Mads S</creatorcontrib><title>High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Raman spectroscopy enables nondestructive, label-free imaging with unprecedented molecular contrast, but is limited by slow data acquisition, largely preventing high-throughput imaging applications. Here, we present a comprehensive framework for higher-throughput molecular imaging via deep-learning-enabled Raman spectroscopy, termed DeepeR, trained on a large data set of hyperspectral Raman images, with over 1.5 million spectra (400 h of acquisition) in total. We first perform denoising and reconstruction of low signal-to-noise ratio Raman molecular signatures via deep learning, with a 10× improvement in the mean-squared error over common Raman filtering methods. Next, we develop a neural network for robust 2–4× spatial super-resolution of hyperspectral Raman images that preserve molecular cellular information. Combining these approaches, we achieve Raman imaging speed-ups of up to 40–90×, enabling good-quality cellular imaging with a high-resolution, high signal-to-noise ratio in under 1 min. We further demonstrate Raman imaging speed-up of 160×, useful for lower resolution imaging applications such as the rapid screening of large areas or for spectral pathology. Finally, transfer learning is applied to extend DeepeR from cell to tissue-scale imaging. DeepeR provides a foundation that will enable a host of higher-throughput Raman spectroscopy and molecular imaging applications across biomedicine.</description><subject>Chemistry</subject><subject>Data acquisition</subject><subject>Deep Learning</subject><subject>Image acquisition</subject><subject>Image reconstruction</subject><subject>Image resolution</subject><subject>Molecular Imaging</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Raman spectroscopy</subject><subject>Signal to noise ratio</subject><subject>Spectroscopy</subject><subject>Spectrum analysis</subject><subject>Spectrum Analysis, Raman</subject><subject>Transfer learning</subject><issn>0003-2700</issn><issn>1520-6882</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kUFr3DAUhEVpaLZJ_0EIhl568fbpSbbsSyCkSRPYtJDuXchayXawLUeyA_n30bKbJe2h6CB4-mYkzRByRmFJAel3pcNSDarTjemXVMeRKD6QBc0Q0rwo8CNZAABLUQAck88hPAJQCjT_RI4ZF2VcuCC_btu6SdeNd3PdjPOU3LvO6LlTPrnrVd0OdfLcquSHMWO6MsoPcZJeD6rqzCZ5UL0akj-j0ZN3Qbvx5ZQcWdUF82W_n5D1zfX66jZd_f55d3W5ShUXYkqN0AIzwyy1UFbMVkwI5GJTabGxBoBbiyUKZIXWiEyJXGc0t6gxQ8s5OyEXO9txrnqz0WaYvOrk6Nte-RfpVCv_PhnaRtbuWZZY5Ixm0eDb3sC7p9mESfZt0Kbr1GDcHCTmAFhkMbCIfv0HfXSzj8FvKZojlpxvDfmO0jGJ4I09PIaC3PYlY1_yrS-57yvKzt9_5CB6KygCsAO28sPF__V8BQOHpS8</recordid><startdate>20211207</startdate><enddate>20211207</enddate><creator>Horgan, Conor C</creator><creator>Jensen, Magnus</creator><creator>Nagelkerke, Anika</creator><creator>St-Pierre, Jean-Philippe</creator><creator>Vercauteren, Tom</creator><creator>Stevens, Molly M</creator><creator>Bergholt, Mads S</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3986-8942</orcidid><orcidid>https://orcid.org/0000-0002-7335-266X</orcidid></search><sort><creationdate>20211207</creationdate><title>High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy</title><author>Horgan, Conor C ; Jensen, Magnus ; Nagelkerke, Anika ; St-Pierre, Jean-Philippe ; Vercauteren, Tom ; Stevens, Molly M ; Bergholt, Mads S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a477t-e7c725e3f1f09b3fb377247dbc7dfe004ff2927238cc223a76c516f2c252f443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chemistry</topic><topic>Data acquisition</topic><topic>Deep Learning</topic><topic>Image acquisition</topic><topic>Image reconstruction</topic><topic>Image resolution</topic><topic>Molecular Imaging</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Raman spectroscopy</topic><topic>Signal to noise ratio</topic><topic>Spectroscopy</topic><topic>Spectrum analysis</topic><topic>Spectrum Analysis, Raman</topic><topic>Transfer learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Horgan, Conor C</creatorcontrib><creatorcontrib>Jensen, Magnus</creatorcontrib><creatorcontrib>Nagelkerke, Anika</creatorcontrib><creatorcontrib>St-Pierre, Jean-Philippe</creatorcontrib><creatorcontrib>Vercauteren, Tom</creatorcontrib><creatorcontrib>Stevens, Molly M</creatorcontrib><creatorcontrib>Bergholt, Mads S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Horgan, Conor C</au><au>Jensen, Magnus</au><au>Nagelkerke, Anika</au><au>St-Pierre, Jean-Philippe</au><au>Vercauteren, Tom</au><au>Stevens, Molly M</au><au>Bergholt, Mads S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2021-12-07</date><risdate>2021</risdate><volume>93</volume><issue>48</issue><spage>15850</spage><epage>15860</epage><pages>15850-15860</pages><issn>0003-2700</issn><issn>1520-6882</issn><eissn>1520-6882</eissn><abstract>Raman spectroscopy enables nondestructive, label-free imaging with unprecedented molecular contrast, but is limited by slow data acquisition, largely preventing high-throughput imaging applications. Here, we present a comprehensive framework for higher-throughput molecular imaging via deep-learning-enabled Raman spectroscopy, termed DeepeR, trained on a large data set of hyperspectral Raman images, with over 1.5 million spectra (400 h of acquisition) in total. We first perform denoising and reconstruction of low signal-to-noise ratio Raman molecular signatures via deep learning, with a 10× improvement in the mean-squared error over common Raman filtering methods. Next, we develop a neural network for robust 2–4× spatial super-resolution of hyperspectral Raman images that preserve molecular cellular information. Combining these approaches, we achieve Raman imaging speed-ups of up to 40–90×, enabling good-quality cellular imaging with a high-resolution, high signal-to-noise ratio in under 1 min. We further demonstrate Raman imaging speed-up of 160×, useful for lower resolution imaging applications such as the rapid screening of large areas or for spectral pathology. Finally, transfer learning is applied to extend DeepeR from cell to tissue-scale imaging. DeepeR provides a foundation that will enable a host of higher-throughput Raman spectroscopy and molecular imaging applications across biomedicine.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>34797972</pmid><doi>10.1021/acs.analchem.1c02178</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-3986-8942</orcidid><orcidid>https://orcid.org/0000-0002-7335-266X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2021-12, Vol.93 (48), p.15850-15860
issn 0003-2700
1520-6882
1520-6882
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9286315
source MEDLINE; ACS Publications
subjects Chemistry
Data acquisition
Deep Learning
Image acquisition
Image reconstruction
Image resolution
Molecular Imaging
Neural networks
Neural Networks, Computer
Raman spectroscopy
Signal to noise ratio
Spectroscopy
Spectrum analysis
Spectrum Analysis, Raman
Transfer learning
title High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T19%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Throughput%20Molecular%20Imaging%20via%20Deep-Learning-Enabled%20Raman%20Spectroscopy&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Horgan,%20Conor%20C&rft.date=2021-12-07&rft.volume=93&rft.issue=48&rft.spage=15850&rft.epage=15860&rft.pages=15850-15860&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.1c02178&rft_dat=%3Cproquest_pubme%3E2616229445%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2616229445&rft_id=info:pmid/34797972&rfr_iscdi=true