Population Genetic Inference With MIGRATE

Many evolutionary biologists collect genetic data from natural populations and then need to investigate the relationship among these populations to compare different biogeographic hypotheses. MIGRATE, a useful tool for exploring relationships between populations and comparing hypotheses, has existed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current Protocols in Bioinformatics 2019-12, Vol.68 (1), p.e87-n/a
Hauptverfasser: Beerli, Peter, Mashayekhi, Somayeh, Sadeghi, Marjan, Khodaei, Marzieh, Shaw, Kyle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 1
container_start_page e87
container_title Current Protocols in Bioinformatics
container_volume 68
creator Beerli, Peter
Mashayekhi, Somayeh
Sadeghi, Marjan
Khodaei, Marzieh
Shaw, Kyle
description Many evolutionary biologists collect genetic data from natural populations and then need to investigate the relationship among these populations to compare different biogeographic hypotheses. MIGRATE, a useful tool for exploring relationships between populations and comparing hypotheses, has existed since 1998. Throughout the years, it has steadily improved in both the quality of algorithms used and in the efficiency of carrying out those calculations, thus allowing for a larger number of loci to be evaluated. This efficiency has been enhanced, as MIGRATE has been developed to perform many of its calculations concurrently when running on a computer cluster. The program is based on the coalescence theory and uses Bayesian inference to estimate posterior probability densities of all the parameters of a user‐specified population model. Complex models, which include migration and colonization parameters, can be specified. These models can be evaluated using marginal likelihoods, thus allowing a user to compare the merits of different hypotheses. The three presented protocols will help novice users to develop sophisticated analysis techniques useful for their research projects. © 2019 The Authors. Basic Protocol 1: First steps with MIGRATE Basic Protocol 2: Population model specification Basic Protocol 3: Prior distribution specification Basic Protocol 4: Model selection Support Protocol 1: Installing the program MIGRATE Support Protocol 2: Installation of parallel MIGRATE
doi_str_mv 10.1002/cpbi.87
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9286049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317601343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2877-b00ea795c30170e82919000754def5dc0d059198d42803c5b473be101fa9d1a3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobszhP5DeqUjnSdM2zY0wx5wFxSEDvQtpeuoCXVubVtm_t2Mf6IVXJ5w8PMn7EnJOYUQBvFtdJWYU8SPSp4L5LvPh_Xh_ZiLskaG1JgEaRCKMQjglPUZ5EILn98n1vKzaXDWmLJwZFtgY7cRFhjUWGp030yyd53j2Ol5Mz8hJpnKLw90ckMXDdDF5dJ9eZvFk_ORqL-LcTQBQcRFoBpQDRp6gAgB44KeYBamGFIJuFaW-FwHTQeJzliAFmimRUsUG5G6rrdpkhanGoqlVLqvarFS9lqUy8u9NYZbyo_ySwuuy-aITXO0EdfnZom3kyliNea4KLFsrvS58CJT5rEMvt6iuS2trzA7PUJCbauWmWhnxjrz4_asDty-yA262wLfJcf2fR07m93Gn-wG6FICY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317601343</pqid></control><display><type>article</type><title>Population Genetic Inference With MIGRATE</title><source>Alma/SFX Local Collection</source><creator>Beerli, Peter ; Mashayekhi, Somayeh ; Sadeghi, Marjan ; Khodaei, Marzieh ; Shaw, Kyle</creator><creatorcontrib>Beerli, Peter ; Mashayekhi, Somayeh ; Sadeghi, Marjan ; Khodaei, Marzieh ; Shaw, Kyle</creatorcontrib><description>Many evolutionary biologists collect genetic data from natural populations and then need to investigate the relationship among these populations to compare different biogeographic hypotheses. MIGRATE, a useful tool for exploring relationships between populations and comparing hypotheses, has existed since 1998. Throughout the years, it has steadily improved in both the quality of algorithms used and in the efficiency of carrying out those calculations, thus allowing for a larger number of loci to be evaluated. This efficiency has been enhanced, as MIGRATE has been developed to perform many of its calculations concurrently when running on a computer cluster. The program is based on the coalescence theory and uses Bayesian inference to estimate posterior probability densities of all the parameters of a user‐specified population model. Complex models, which include migration and colonization parameters, can be specified. These models can be evaluated using marginal likelihoods, thus allowing a user to compare the merits of different hypotheses. The three presented protocols will help novice users to develop sophisticated analysis techniques useful for their research projects. © 2019 The Authors. Basic Protocol 1: First steps with MIGRATE Basic Protocol 2: Population model specification Basic Protocol 3: Prior distribution specification Basic Protocol 4: Model selection Support Protocol 1: Installing the program MIGRATE Support Protocol 2: Installation of parallel MIGRATE</description><identifier>ISSN: 1934-3396</identifier><identifier>EISSN: 1934-340X</identifier><identifier>DOI: 10.1002/cpbi.87</identifier><identifier>PMID: 31756024</identifier><language>eng</language><publisher>United States: John Wiley and Sons Inc</publisher><subject>Bayesian inference ; Biochemistry and Molecular Cell Biology ; coalescent ; divergence time ; DNA ; gene flow ; MCMC ; microsatellite ; population genetics ; Protocol</subject><ispartof>Current Protocols in Bioinformatics, 2019-12, Vol.68 (1), p.e87-n/a</ispartof><rights>2019 The Authors.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2877-b00ea795c30170e82919000754def5dc0d059198d42803c5b473be101fa9d1a3</citedby><cites>FETCH-LOGICAL-c2877-b00ea795c30170e82919000754def5dc0d059198d42803c5b473be101fa9d1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31756024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beerli, Peter</creatorcontrib><creatorcontrib>Mashayekhi, Somayeh</creatorcontrib><creatorcontrib>Sadeghi, Marjan</creatorcontrib><creatorcontrib>Khodaei, Marzieh</creatorcontrib><creatorcontrib>Shaw, Kyle</creatorcontrib><title>Population Genetic Inference With MIGRATE</title><title>Current Protocols in Bioinformatics</title><addtitle>Curr Protoc Bioinformatics</addtitle><description>Many evolutionary biologists collect genetic data from natural populations and then need to investigate the relationship among these populations to compare different biogeographic hypotheses. MIGRATE, a useful tool for exploring relationships between populations and comparing hypotheses, has existed since 1998. Throughout the years, it has steadily improved in both the quality of algorithms used and in the efficiency of carrying out those calculations, thus allowing for a larger number of loci to be evaluated. This efficiency has been enhanced, as MIGRATE has been developed to perform many of its calculations concurrently when running on a computer cluster. The program is based on the coalescence theory and uses Bayesian inference to estimate posterior probability densities of all the parameters of a user‐specified population model. Complex models, which include migration and colonization parameters, can be specified. These models can be evaluated using marginal likelihoods, thus allowing a user to compare the merits of different hypotheses. The three presented protocols will help novice users to develop sophisticated analysis techniques useful for their research projects. © 2019 The Authors. Basic Protocol 1: First steps with MIGRATE Basic Protocol 2: Population model specification Basic Protocol 3: Prior distribution specification Basic Protocol 4: Model selection Support Protocol 1: Installing the program MIGRATE Support Protocol 2: Installation of parallel MIGRATE</description><subject>Bayesian inference</subject><subject>Biochemistry and Molecular Cell Biology</subject><subject>coalescent</subject><subject>divergence time</subject><subject>DNA</subject><subject>gene flow</subject><subject>MCMC</subject><subject>microsatellite</subject><subject>population genetics</subject><subject>Protocol</subject><issn>1934-3396</issn><issn>1934-340X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kF1LwzAUhoMobszhP5DeqUjnSdM2zY0wx5wFxSEDvQtpeuoCXVubVtm_t2Mf6IVXJ5w8PMn7EnJOYUQBvFtdJWYU8SPSp4L5LvPh_Xh_ZiLskaG1JgEaRCKMQjglPUZ5EILn98n1vKzaXDWmLJwZFtgY7cRFhjUWGp030yyd53j2Ol5Mz8hJpnKLw90ckMXDdDF5dJ9eZvFk_ORqL-LcTQBQcRFoBpQDRp6gAgB44KeYBamGFIJuFaW-FwHTQeJzliAFmimRUsUG5G6rrdpkhanGoqlVLqvarFS9lqUy8u9NYZbyo_ySwuuy-aITXO0EdfnZom3kyliNea4KLFsrvS58CJT5rEMvt6iuS2trzA7PUJCbauWmWhnxjrz4_asDty-yA262wLfJcf2fR07m93Gn-wG6FICY</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Beerli, Peter</creator><creator>Mashayekhi, Somayeh</creator><creator>Sadeghi, Marjan</creator><creator>Khodaei, Marzieh</creator><creator>Shaw, Kyle</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201912</creationdate><title>Population Genetic Inference With MIGRATE</title><author>Beerli, Peter ; Mashayekhi, Somayeh ; Sadeghi, Marjan ; Khodaei, Marzieh ; Shaw, Kyle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2877-b00ea795c30170e82919000754def5dc0d059198d42803c5b473be101fa9d1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian inference</topic><topic>Biochemistry and Molecular Cell Biology</topic><topic>coalescent</topic><topic>divergence time</topic><topic>DNA</topic><topic>gene flow</topic><topic>MCMC</topic><topic>microsatellite</topic><topic>population genetics</topic><topic>Protocol</topic><toplevel>online_resources</toplevel><creatorcontrib>Beerli, Peter</creatorcontrib><creatorcontrib>Mashayekhi, Somayeh</creatorcontrib><creatorcontrib>Sadeghi, Marjan</creatorcontrib><creatorcontrib>Khodaei, Marzieh</creatorcontrib><creatorcontrib>Shaw, Kyle</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current Protocols in Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beerli, Peter</au><au>Mashayekhi, Somayeh</au><au>Sadeghi, Marjan</au><au>Khodaei, Marzieh</au><au>Shaw, Kyle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population Genetic Inference With MIGRATE</atitle><jtitle>Current Protocols in Bioinformatics</jtitle><addtitle>Curr Protoc Bioinformatics</addtitle><date>2019-12</date><risdate>2019</risdate><volume>68</volume><issue>1</issue><spage>e87</spage><epage>n/a</epage><pages>e87-n/a</pages><issn>1934-3396</issn><eissn>1934-340X</eissn><abstract>Many evolutionary biologists collect genetic data from natural populations and then need to investigate the relationship among these populations to compare different biogeographic hypotheses. MIGRATE, a useful tool for exploring relationships between populations and comparing hypotheses, has existed since 1998. Throughout the years, it has steadily improved in both the quality of algorithms used and in the efficiency of carrying out those calculations, thus allowing for a larger number of loci to be evaluated. This efficiency has been enhanced, as MIGRATE has been developed to perform many of its calculations concurrently when running on a computer cluster. The program is based on the coalescence theory and uses Bayesian inference to estimate posterior probability densities of all the parameters of a user‐specified population model. Complex models, which include migration and colonization parameters, can be specified. These models can be evaluated using marginal likelihoods, thus allowing a user to compare the merits of different hypotheses. The three presented protocols will help novice users to develop sophisticated analysis techniques useful for their research projects. © 2019 The Authors. Basic Protocol 1: First steps with MIGRATE Basic Protocol 2: Population model specification Basic Protocol 3: Prior distribution specification Basic Protocol 4: Model selection Support Protocol 1: Installing the program MIGRATE Support Protocol 2: Installation of parallel MIGRATE</abstract><cop>United States</cop><pub>John Wiley and Sons Inc</pub><pmid>31756024</pmid><doi>10.1002/cpbi.87</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1934-3396
ispartof Current Protocols in Bioinformatics, 2019-12, Vol.68 (1), p.e87-n/a
issn 1934-3396
1934-340X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9286049
source Alma/SFX Local Collection
subjects Bayesian inference
Biochemistry and Molecular Cell Biology
coalescent
divergence time
DNA
gene flow
MCMC
microsatellite
population genetics
Protocol
title Population Genetic Inference With MIGRATE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%20Genetic%20Inference%20With%20MIGRATE&rft.jtitle=Current%20Protocols%20in%20Bioinformatics&rft.au=Beerli,%20Peter&rft.date=2019-12&rft.volume=68&rft.issue=1&rft.spage=e87&rft.epage=n/a&rft.pages=e87-n/a&rft.issn=1934-3396&rft.eissn=1934-340X&rft_id=info:doi/10.1002/cpbi.87&rft_dat=%3Cproquest_pubme%3E2317601343%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317601343&rft_id=info:pmid/31756024&rfr_iscdi=true