Population Genetic Inference With MIGRATE
Many evolutionary biologists collect genetic data from natural populations and then need to investigate the relationship among these populations to compare different biogeographic hypotheses. MIGRATE, a useful tool for exploring relationships between populations and comparing hypotheses, has existed...
Gespeichert in:
Veröffentlicht in: | Current Protocols in Bioinformatics 2019-12, Vol.68 (1), p.e87-n/a |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 1 |
container_start_page | e87 |
container_title | Current Protocols in Bioinformatics |
container_volume | 68 |
creator | Beerli, Peter Mashayekhi, Somayeh Sadeghi, Marjan Khodaei, Marzieh Shaw, Kyle |
description | Many evolutionary biologists collect genetic data from natural populations and then need to investigate the relationship among these populations to compare different biogeographic hypotheses. MIGRATE, a useful tool for exploring relationships between populations and comparing hypotheses, has existed since 1998. Throughout the years, it has steadily improved in both the quality of algorithms used and in the efficiency of carrying out those calculations, thus allowing for a larger number of loci to be evaluated. This efficiency has been enhanced, as MIGRATE has been developed to perform many of its calculations concurrently when running on a computer cluster. The program is based on the coalescence theory and uses Bayesian inference to estimate posterior probability densities of all the parameters of a user‐specified population model. Complex models, which include migration and colonization parameters, can be specified. These models can be evaluated using marginal likelihoods, thus allowing a user to compare the merits of different hypotheses. The three presented protocols will help novice users to develop sophisticated analysis techniques useful for their research projects. © 2019 The Authors.
Basic Protocol 1: First steps with MIGRATE
Basic Protocol 2: Population model specification
Basic Protocol 3: Prior distribution specification
Basic Protocol 4: Model selection
Support Protocol 1: Installing the program MIGRATE
Support Protocol 2: Installation of parallel MIGRATE |
doi_str_mv | 10.1002/cpbi.87 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9286049</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2317601343</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2877-b00ea795c30170e82919000754def5dc0d059198d42803c5b473be101fa9d1a3</originalsourceid><addsrcrecordid>eNp1kF1LwzAUhoMobszhP5DeqUjnSdM2zY0wx5wFxSEDvQtpeuoCXVubVtm_t2Mf6IVXJ5w8PMn7EnJOYUQBvFtdJWYU8SPSp4L5LvPh_Xh_ZiLskaG1JgEaRCKMQjglPUZ5EILn98n1vKzaXDWmLJwZFtgY7cRFhjUWGp030yyd53j2Ol5Mz8hJpnKLw90ckMXDdDF5dJ9eZvFk_ORqL-LcTQBQcRFoBpQDRp6gAgB44KeYBamGFIJuFaW-FwHTQeJzliAFmimRUsUG5G6rrdpkhanGoqlVLqvarFS9lqUy8u9NYZbyo_ySwuuy-aITXO0EdfnZom3kyliNea4KLFsrvS58CJT5rEMvt6iuS2trzA7PUJCbauWmWhnxjrz4_asDty-yA262wLfJcf2fR07m93Gn-wG6FICY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2317601343</pqid></control><display><type>article</type><title>Population Genetic Inference With MIGRATE</title><source>Alma/SFX Local Collection</source><creator>Beerli, Peter ; Mashayekhi, Somayeh ; Sadeghi, Marjan ; Khodaei, Marzieh ; Shaw, Kyle</creator><creatorcontrib>Beerli, Peter ; Mashayekhi, Somayeh ; Sadeghi, Marjan ; Khodaei, Marzieh ; Shaw, Kyle</creatorcontrib><description>Many evolutionary biologists collect genetic data from natural populations and then need to investigate the relationship among these populations to compare different biogeographic hypotheses. MIGRATE, a useful tool for exploring relationships between populations and comparing hypotheses, has existed since 1998. Throughout the years, it has steadily improved in both the quality of algorithms used and in the efficiency of carrying out those calculations, thus allowing for a larger number of loci to be evaluated. This efficiency has been enhanced, as MIGRATE has been developed to perform many of its calculations concurrently when running on a computer cluster. The program is based on the coalescence theory and uses Bayesian inference to estimate posterior probability densities of all the parameters of a user‐specified population model. Complex models, which include migration and colonization parameters, can be specified. These models can be evaluated using marginal likelihoods, thus allowing a user to compare the merits of different hypotheses. The three presented protocols will help novice users to develop sophisticated analysis techniques useful for their research projects. © 2019 The Authors.
Basic Protocol 1: First steps with MIGRATE
Basic Protocol 2: Population model specification
Basic Protocol 3: Prior distribution specification
Basic Protocol 4: Model selection
Support Protocol 1: Installing the program MIGRATE
Support Protocol 2: Installation of parallel MIGRATE</description><identifier>ISSN: 1934-3396</identifier><identifier>EISSN: 1934-340X</identifier><identifier>DOI: 10.1002/cpbi.87</identifier><identifier>PMID: 31756024</identifier><language>eng</language><publisher>United States: John Wiley and Sons Inc</publisher><subject>Bayesian inference ; Biochemistry and Molecular Cell Biology ; coalescent ; divergence time ; DNA ; gene flow ; MCMC ; microsatellite ; population genetics ; Protocol</subject><ispartof>Current Protocols in Bioinformatics, 2019-12, Vol.68 (1), p.e87-n/a</ispartof><rights>2019 The Authors.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2877-b00ea795c30170e82919000754def5dc0d059198d42803c5b473be101fa9d1a3</citedby><cites>FETCH-LOGICAL-c2877-b00ea795c30170e82919000754def5dc0d059198d42803c5b473be101fa9d1a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31756024$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beerli, Peter</creatorcontrib><creatorcontrib>Mashayekhi, Somayeh</creatorcontrib><creatorcontrib>Sadeghi, Marjan</creatorcontrib><creatorcontrib>Khodaei, Marzieh</creatorcontrib><creatorcontrib>Shaw, Kyle</creatorcontrib><title>Population Genetic Inference With MIGRATE</title><title>Current Protocols in Bioinformatics</title><addtitle>Curr Protoc Bioinformatics</addtitle><description>Many evolutionary biologists collect genetic data from natural populations and then need to investigate the relationship among these populations to compare different biogeographic hypotheses. MIGRATE, a useful tool for exploring relationships between populations and comparing hypotheses, has existed since 1998. Throughout the years, it has steadily improved in both the quality of algorithms used and in the efficiency of carrying out those calculations, thus allowing for a larger number of loci to be evaluated. This efficiency has been enhanced, as MIGRATE has been developed to perform many of its calculations concurrently when running on a computer cluster. The program is based on the coalescence theory and uses Bayesian inference to estimate posterior probability densities of all the parameters of a user‐specified population model. Complex models, which include migration and colonization parameters, can be specified. These models can be evaluated using marginal likelihoods, thus allowing a user to compare the merits of different hypotheses. The three presented protocols will help novice users to develop sophisticated analysis techniques useful for their research projects. © 2019 The Authors.
Basic Protocol 1: First steps with MIGRATE
Basic Protocol 2: Population model specification
Basic Protocol 3: Prior distribution specification
Basic Protocol 4: Model selection
Support Protocol 1: Installing the program MIGRATE
Support Protocol 2: Installation of parallel MIGRATE</description><subject>Bayesian inference</subject><subject>Biochemistry and Molecular Cell Biology</subject><subject>coalescent</subject><subject>divergence time</subject><subject>DNA</subject><subject>gene flow</subject><subject>MCMC</subject><subject>microsatellite</subject><subject>population genetics</subject><subject>Protocol</subject><issn>1934-3396</issn><issn>1934-340X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><recordid>eNp1kF1LwzAUhoMobszhP5DeqUjnSdM2zY0wx5wFxSEDvQtpeuoCXVubVtm_t2Mf6IVXJ5w8PMn7EnJOYUQBvFtdJWYU8SPSp4L5LvPh_Xh_ZiLskaG1JgEaRCKMQjglPUZ5EILn98n1vKzaXDWmLJwZFtgY7cRFhjUWGp030yyd53j2Ol5Mz8hJpnKLw90ckMXDdDF5dJ9eZvFk_ORqL-LcTQBQcRFoBpQDRp6gAgB44KeYBamGFIJuFaW-FwHTQeJzliAFmimRUsUG5G6rrdpkhanGoqlVLqvarFS9lqUy8u9NYZbyo_ySwuuy-aITXO0EdfnZom3kyliNea4KLFsrvS58CJT5rEMvt6iuS2trzA7PUJCbauWmWhnxjrz4_asDty-yA262wLfJcf2fR07m93Gn-wG6FICY</recordid><startdate>201912</startdate><enddate>201912</enddate><creator>Beerli, Peter</creator><creator>Mashayekhi, Somayeh</creator><creator>Sadeghi, Marjan</creator><creator>Khodaei, Marzieh</creator><creator>Shaw, Kyle</creator><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>201912</creationdate><title>Population Genetic Inference With MIGRATE</title><author>Beerli, Peter ; Mashayekhi, Somayeh ; Sadeghi, Marjan ; Khodaei, Marzieh ; Shaw, Kyle</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2877-b00ea795c30170e82919000754def5dc0d059198d42803c5b473be101fa9d1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bayesian inference</topic><topic>Biochemistry and Molecular Cell Biology</topic><topic>coalescent</topic><topic>divergence time</topic><topic>DNA</topic><topic>gene flow</topic><topic>MCMC</topic><topic>microsatellite</topic><topic>population genetics</topic><topic>Protocol</topic><toplevel>online_resources</toplevel><creatorcontrib>Beerli, Peter</creatorcontrib><creatorcontrib>Mashayekhi, Somayeh</creatorcontrib><creatorcontrib>Sadeghi, Marjan</creatorcontrib><creatorcontrib>Khodaei, Marzieh</creatorcontrib><creatorcontrib>Shaw, Kyle</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>Wiley Online Library Free Content</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current Protocols in Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beerli, Peter</au><au>Mashayekhi, Somayeh</au><au>Sadeghi, Marjan</au><au>Khodaei, Marzieh</au><au>Shaw, Kyle</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Population Genetic Inference With MIGRATE</atitle><jtitle>Current Protocols in Bioinformatics</jtitle><addtitle>Curr Protoc Bioinformatics</addtitle><date>2019-12</date><risdate>2019</risdate><volume>68</volume><issue>1</issue><spage>e87</spage><epage>n/a</epage><pages>e87-n/a</pages><issn>1934-3396</issn><eissn>1934-340X</eissn><abstract>Many evolutionary biologists collect genetic data from natural populations and then need to investigate the relationship among these populations to compare different biogeographic hypotheses. MIGRATE, a useful tool for exploring relationships between populations and comparing hypotheses, has existed since 1998. Throughout the years, it has steadily improved in both the quality of algorithms used and in the efficiency of carrying out those calculations, thus allowing for a larger number of loci to be evaluated. This efficiency has been enhanced, as MIGRATE has been developed to perform many of its calculations concurrently when running on a computer cluster. The program is based on the coalescence theory and uses Bayesian inference to estimate posterior probability densities of all the parameters of a user‐specified population model. Complex models, which include migration and colonization parameters, can be specified. These models can be evaluated using marginal likelihoods, thus allowing a user to compare the merits of different hypotheses. The three presented protocols will help novice users to develop sophisticated analysis techniques useful for their research projects. © 2019 The Authors.
Basic Protocol 1: First steps with MIGRATE
Basic Protocol 2: Population model specification
Basic Protocol 3: Prior distribution specification
Basic Protocol 4: Model selection
Support Protocol 1: Installing the program MIGRATE
Support Protocol 2: Installation of parallel MIGRATE</abstract><cop>United States</cop><pub>John Wiley and Sons Inc</pub><pmid>31756024</pmid><doi>10.1002/cpbi.87</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1934-3396 |
ispartof | Current Protocols in Bioinformatics, 2019-12, Vol.68 (1), p.e87-n/a |
issn | 1934-3396 1934-340X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9286049 |
source | Alma/SFX Local Collection |
subjects | Bayesian inference Biochemistry and Molecular Cell Biology coalescent divergence time DNA gene flow MCMC microsatellite population genetics Protocol |
title | Population Genetic Inference With MIGRATE |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T08%3A04%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Population%20Genetic%20Inference%20With%20MIGRATE&rft.jtitle=Current%20Protocols%20in%20Bioinformatics&rft.au=Beerli,%20Peter&rft.date=2019-12&rft.volume=68&rft.issue=1&rft.spage=e87&rft.epage=n/a&rft.pages=e87-n/a&rft.issn=1934-3396&rft.eissn=1934-340X&rft_id=info:doi/10.1002/cpbi.87&rft_dat=%3Cproquest_pubme%3E2317601343%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2317601343&rft_id=info:pmid/31756024&rfr_iscdi=true |