Clinical Data Cohort Quality Improvement: The Case of the Medication Data in The University of Minnesota's Clinical Data Repository
Clinical and translational research centers (CTRCs) have emerged as key centers for electronic medical record related research through integrated data repositories (IDRs) and the 'secondary use' of clinical data. Researchers accessing and pre-processing ever increasing amounts of electroni...
Gespeichert in:
Veröffentlicht in: | AMIA ... Annual Symposium proceedings 2022, Vol.2022, p.293-302 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Clinical and translational research centers (CTRCs) have emerged as key centers for electronic medical record related research through integrated data repositories (IDRs) and the 'secondary use' of clinical data. Researchers accessing and pre-processing ever increasing amounts of electronic medical records for data mining tasks have a growing need for best practice approaches for clinical data quality assessment and improvement. This project focused on a large data extract for 7 statin medication prescriptions for patients with cardiovascular disease. After the initial data extraction, we proceeded to analyze the data for completeness, correctness, currency, and percentage populated using established data quality frameworks. Assessment of the said data was performed through medication possession ratios, medication discontinuation reasons, and drug dosages. When we compared distributions of data elements such as drug dosage before and after changes were introduced by our pre-processing protocols, only a minimal noticeable difference was found as the clinical data cohort quality assessment and pre-processing were completed without substantially altering the original data structure. Our study demonstrated practical steps for clinical data cohort quality improvement using medication data and illustrates a best practice approach in clinical data cohort quality improvement for any data mining tasks. |
---|---|
ISSN: | 2153-4063 2153-4063 1559-4076 |