STAT3 suppresses the AMPKα/ULK1‐dependent induction of autophagy in glioblastoma cells
Despite advances in molecular characterization, glioblastoma (GBM) remains the most common and lethal brain tumour with high mortality rates in both paediatric and adult patients. The signal transducer and activator of transcription 3 (STAT3) is an important oncogenic driver of GBM. Although STAT3 r...
Gespeichert in:
Veröffentlicht in: | Journal of cellular and molecular medicine 2022-07, Vol.26 (14), p.3873-3890 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3890 |
---|---|
container_issue | 14 |
container_start_page | 3873 |
container_title | Journal of cellular and molecular medicine |
container_volume | 26 |
creator | Bhattacharya, Sujoy Yin, Jinggang Yang, Chuanhe Wang, Yinan Sims, Michelle Pfeffer, Lawrence M. Chaum, Edward |
description | Despite advances in molecular characterization, glioblastoma (GBM) remains the most common and lethal brain tumour with high mortality rates in both paediatric and adult patients. The signal transducer and activator of transcription 3 (STAT3) is an important oncogenic driver of GBM. Although STAT3 reportedly plays a role in autophagy of some cells, its role in cancer cell autophagy remains unclear. In this study, we found Serine‐727 and Tyrosine‐705 phosphorylation of STAT3 was constitutive in GBM cell lines. Tyrosine phosphorylation of STAT3 in GBM cells suppresses autophagy, whereas knockout (KO) of STAT3 increases ULK1 gene expression, increases TSC2‐AMPKα‐ULK1 signalling, and increases lysosomal Cathepsin D processing, leading to the stimulation of autophagy. Rescue of STAT3‐KO cells by the enforced expression of wild‐type (WT) STAT3 reverses these pathways and inhibits autophagy. Conversely, expression of Y705F‐ and S727A‐STAT3 phosphorylation deficient mutants in STAT3‐KO cells did not suppress autophagy. Inhibition of ULK1 activity (by treatment with MRT68921) or its expression (by siRNA knockdown) in STAT3‐KO cells inhibits autophagy and sensitizes cells to apoptosis. Taken together, our findings suggest that serine and tyrosine phosphorylation of STAT3 play critical roles in STAT3‐dependent autophagy in GBM, and thus are potential targets to treat GBM. |
doi_str_mv | 10.1111/jcmm.17421 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9279602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688770395</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4481-c2a0cc2a05975b9b5a04a6121d7371b1511f2e394c031cfb48dd21b0079285b93</originalsourceid><addsrcrecordid>eNp9kUFO3DAUhi3UCiiw6QGqSGyqSgN-thPbm0qjEbTAjEBiWLCyHMeZySiJ0zgBza5H4CpcpIfgJHg6Ayos6oVtPX_-3__0I_QZ8BGEdbwwVXUEnBHYQrsQCzJgkrIPmzsIKnbQJ-8XGNMEqNxGOzROOMYgdtHt9XQ4pZHvm6a13lsfdXMbDSdXF38ej2_GF_D0-yGzja0zW3dRUWe96QpXRy6PdN-5Zq5ny1COZmXh0lL7zlU6MrYs_T76mOvS24PNuYduTk-mo5-D8eWPs9FwPDCMCRgYorFZbbHkcSrTWGOmEyCQccohhRggJ5ZKZjAFk6dMZBmBFGMuiQgf6B76vtZt-rSymQk-W12qpi0q3S6V04V6-1IXczVzd0oSLhNMgsDXjUDrfvXWd6oq_GoEXVvXe0USzkI7wVhAD9-hC9e3dRgvUEJwjqmMA_VtTZnWed_a_NUMYLVKTK0SU38TC_CXf-2_oi8RBQDWwH1R2uV_pNT5aDJZiz4DEMqh5g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688770395</pqid></control><display><type>article</type><title>STAT3 suppresses the AMPKα/ULK1‐dependent induction of autophagy in glioblastoma cells</title><source>DOAJ Directory of Open Access Journals</source><source>Access via Wiley Online Library</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><creator>Bhattacharya, Sujoy ; Yin, Jinggang ; Yang, Chuanhe ; Wang, Yinan ; Sims, Michelle ; Pfeffer, Lawrence M. ; Chaum, Edward</creator><creatorcontrib>Bhattacharya, Sujoy ; Yin, Jinggang ; Yang, Chuanhe ; Wang, Yinan ; Sims, Michelle ; Pfeffer, Lawrence M. ; Chaum, Edward</creatorcontrib><description>Despite advances in molecular characterization, glioblastoma (GBM) remains the most common and lethal brain tumour with high mortality rates in both paediatric and adult patients. The signal transducer and activator of transcription 3 (STAT3) is an important oncogenic driver of GBM. Although STAT3 reportedly plays a role in autophagy of some cells, its role in cancer cell autophagy remains unclear. In this study, we found Serine‐727 and Tyrosine‐705 phosphorylation of STAT3 was constitutive in GBM cell lines. Tyrosine phosphorylation of STAT3 in GBM cells suppresses autophagy, whereas knockout (KO) of STAT3 increases ULK1 gene expression, increases TSC2‐AMPKα‐ULK1 signalling, and increases lysosomal Cathepsin D processing, leading to the stimulation of autophagy. Rescue of STAT3‐KO cells by the enforced expression of wild‐type (WT) STAT3 reverses these pathways and inhibits autophagy. Conversely, expression of Y705F‐ and S727A‐STAT3 phosphorylation deficient mutants in STAT3‐KO cells did not suppress autophagy. Inhibition of ULK1 activity (by treatment with MRT68921) or its expression (by siRNA knockdown) in STAT3‐KO cells inhibits autophagy and sensitizes cells to apoptosis. Taken together, our findings suggest that serine and tyrosine phosphorylation of STAT3 play critical roles in STAT3‐dependent autophagy in GBM, and thus are potential targets to treat GBM.</description><identifier>ISSN: 1582-1838</identifier><identifier>EISSN: 1582-4934</identifier><identifier>DOI: 10.1111/jcmm.17421</identifier><identifier>PMID: 35670018</identifier><language>eng</language><publisher>England: John Wiley & Sons, Inc</publisher><subject>Antibodies ; Apoptosis ; Atg14 ; Autophagy ; Beclin1 ; Biotechnology ; Brain cancer ; Brain tumors ; Caspase‐3 ; Cathepsin D ; CRISPR ; Deficient mutant ; Gene expression ; Glioblastoma ; Glioblastoma cells ; LC3‐I/LC3‐II; Prom1/CD133 ; Medical prognosis ; MRT68921 ; Original ; Phosphatase ; Phosphorylation ; Proteins ; RAD001 (Everolimus) ; Reagents ; Sequestome/p62; autophagy flux; mTORC1/2 ; Serine ; Signal transduction ; siRNA ; Software ; Stat3 protein ; Targeted cancer therapy ; TSC2 gene ; tuberin/TSC2 ; Tumorigenesis ; Tyrosine</subject><ispartof>Journal of cellular and molecular medicine, 2022-07, Vol.26 (14), p.3873-3890</ispartof><rights>2022 The Authors. published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><rights>2022 The Authors. Journal of Cellular and Molecular Medicine published by Foundation for Cellular and Molecular Medicine and John Wiley & Sons Ltd.</rights><rights>2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4481-c2a0cc2a05975b9b5a04a6121d7371b1511f2e394c031cfb48dd21b0079285b93</citedby><cites>FETCH-LOGICAL-c4481-c2a0cc2a05975b9b5a04a6121d7371b1511f2e394c031cfb48dd21b0079285b93</cites><orcidid>0000-0003-4443-9691 ; 0000-0003-2809-1234 ; 0000-0003-3542-8376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279602/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279602/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,1417,11562,27924,27925,45574,45575,46052,46476,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35670018$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bhattacharya, Sujoy</creatorcontrib><creatorcontrib>Yin, Jinggang</creatorcontrib><creatorcontrib>Yang, Chuanhe</creatorcontrib><creatorcontrib>Wang, Yinan</creatorcontrib><creatorcontrib>Sims, Michelle</creatorcontrib><creatorcontrib>Pfeffer, Lawrence M.</creatorcontrib><creatorcontrib>Chaum, Edward</creatorcontrib><title>STAT3 suppresses the AMPKα/ULK1‐dependent induction of autophagy in glioblastoma cells</title><title>Journal of cellular and molecular medicine</title><addtitle>J Cell Mol Med</addtitle><description>Despite advances in molecular characterization, glioblastoma (GBM) remains the most common and lethal brain tumour with high mortality rates in both paediatric and adult patients. The signal transducer and activator of transcription 3 (STAT3) is an important oncogenic driver of GBM. Although STAT3 reportedly plays a role in autophagy of some cells, its role in cancer cell autophagy remains unclear. In this study, we found Serine‐727 and Tyrosine‐705 phosphorylation of STAT3 was constitutive in GBM cell lines. Tyrosine phosphorylation of STAT3 in GBM cells suppresses autophagy, whereas knockout (KO) of STAT3 increases ULK1 gene expression, increases TSC2‐AMPKα‐ULK1 signalling, and increases lysosomal Cathepsin D processing, leading to the stimulation of autophagy. Rescue of STAT3‐KO cells by the enforced expression of wild‐type (WT) STAT3 reverses these pathways and inhibits autophagy. Conversely, expression of Y705F‐ and S727A‐STAT3 phosphorylation deficient mutants in STAT3‐KO cells did not suppress autophagy. Inhibition of ULK1 activity (by treatment with MRT68921) or its expression (by siRNA knockdown) in STAT3‐KO cells inhibits autophagy and sensitizes cells to apoptosis. Taken together, our findings suggest that serine and tyrosine phosphorylation of STAT3 play critical roles in STAT3‐dependent autophagy in GBM, and thus are potential targets to treat GBM.</description><subject>Antibodies</subject><subject>Apoptosis</subject><subject>Atg14</subject><subject>Autophagy</subject><subject>Beclin1</subject><subject>Biotechnology</subject><subject>Brain cancer</subject><subject>Brain tumors</subject><subject>Caspase‐3</subject><subject>Cathepsin D</subject><subject>CRISPR</subject><subject>Deficient mutant</subject><subject>Gene expression</subject><subject>Glioblastoma</subject><subject>Glioblastoma cells</subject><subject>LC3‐I/LC3‐II; Prom1/CD133</subject><subject>Medical prognosis</subject><subject>MRT68921</subject><subject>Original</subject><subject>Phosphatase</subject><subject>Phosphorylation</subject><subject>Proteins</subject><subject>RAD001 (Everolimus)</subject><subject>Reagents</subject><subject>Sequestome/p62; autophagy flux; mTORC1/2</subject><subject>Serine</subject><subject>Signal transduction</subject><subject>siRNA</subject><subject>Software</subject><subject>Stat3 protein</subject><subject>Targeted cancer therapy</subject><subject>TSC2 gene</subject><subject>tuberin/TSC2</subject><subject>Tumorigenesis</subject><subject>Tyrosine</subject><issn>1582-1838</issn><issn>1582-4934</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><sourceid>WIN</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUFO3DAUhi3UCiiw6QGqSGyqSgN-thPbm0qjEbTAjEBiWLCyHMeZySiJ0zgBza5H4CpcpIfgJHg6Ayos6oVtPX_-3__0I_QZ8BGEdbwwVXUEnBHYQrsQCzJgkrIPmzsIKnbQJ-8XGNMEqNxGOzROOMYgdtHt9XQ4pZHvm6a13lsfdXMbDSdXF38ej2_GF_D0-yGzja0zW3dRUWe96QpXRy6PdN-5Zq5ny1COZmXh0lL7zlU6MrYs_T76mOvS24PNuYduTk-mo5-D8eWPs9FwPDCMCRgYorFZbbHkcSrTWGOmEyCQccohhRggJ5ZKZjAFk6dMZBmBFGMuiQgf6B76vtZt-rSymQk-W12qpi0q3S6V04V6-1IXczVzd0oSLhNMgsDXjUDrfvXWd6oq_GoEXVvXe0USzkI7wVhAD9-hC9e3dRgvUEJwjqmMA_VtTZnWed_a_NUMYLVKTK0SU38TC_CXf-2_oi8RBQDWwH1R2uV_pNT5aDJZiz4DEMqh5g</recordid><startdate>202207</startdate><enddate>202207</enddate><creator>Bhattacharya, Sujoy</creator><creator>Yin, Jinggang</creator><creator>Yang, Chuanhe</creator><creator>Wang, Yinan</creator><creator>Sims, Michelle</creator><creator>Pfeffer, Lawrence M.</creator><creator>Chaum, Edward</creator><general>John Wiley & Sons, Inc</general><general>John Wiley and Sons Inc</general><scope>24P</scope><scope>WIN</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-4443-9691</orcidid><orcidid>https://orcid.org/0000-0003-2809-1234</orcidid><orcidid>https://orcid.org/0000-0003-3542-8376</orcidid></search><sort><creationdate>202207</creationdate><title>STAT3 suppresses the AMPKα/ULK1‐dependent induction of autophagy in glioblastoma cells</title><author>Bhattacharya, Sujoy ; Yin, Jinggang ; Yang, Chuanhe ; Wang, Yinan ; Sims, Michelle ; Pfeffer, Lawrence M. ; Chaum, Edward</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4481-c2a0cc2a05975b9b5a04a6121d7371b1511f2e394c031cfb48dd21b0079285b93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Antibodies</topic><topic>Apoptosis</topic><topic>Atg14</topic><topic>Autophagy</topic><topic>Beclin1</topic><topic>Biotechnology</topic><topic>Brain cancer</topic><topic>Brain tumors</topic><topic>Caspase‐3</topic><topic>Cathepsin D</topic><topic>CRISPR</topic><topic>Deficient mutant</topic><topic>Gene expression</topic><topic>Glioblastoma</topic><topic>Glioblastoma cells</topic><topic>LC3‐I/LC3‐II; Prom1/CD133</topic><topic>Medical prognosis</topic><topic>MRT68921</topic><topic>Original</topic><topic>Phosphatase</topic><topic>Phosphorylation</topic><topic>Proteins</topic><topic>RAD001 (Everolimus)</topic><topic>Reagents</topic><topic>Sequestome/p62; autophagy flux; mTORC1/2</topic><topic>Serine</topic><topic>Signal transduction</topic><topic>siRNA</topic><topic>Software</topic><topic>Stat3 protein</topic><topic>Targeted cancer therapy</topic><topic>TSC2 gene</topic><topic>tuberin/TSC2</topic><topic>Tumorigenesis</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bhattacharya, Sujoy</creatorcontrib><creatorcontrib>Yin, Jinggang</creatorcontrib><creatorcontrib>Yang, Chuanhe</creatorcontrib><creatorcontrib>Wang, Yinan</creatorcontrib><creatorcontrib>Sims, Michelle</creatorcontrib><creatorcontrib>Pfeffer, Lawrence M.</creatorcontrib><creatorcontrib>Chaum, Edward</creatorcontrib><collection>Wiley Online Library (Open Access Collection)</collection><collection>Wiley Online Library (Open Access Collection)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of cellular and molecular medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bhattacharya, Sujoy</au><au>Yin, Jinggang</au><au>Yang, Chuanhe</au><au>Wang, Yinan</au><au>Sims, Michelle</au><au>Pfeffer, Lawrence M.</au><au>Chaum, Edward</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>STAT3 suppresses the AMPKα/ULK1‐dependent induction of autophagy in glioblastoma cells</atitle><jtitle>Journal of cellular and molecular medicine</jtitle><addtitle>J Cell Mol Med</addtitle><date>2022-07</date><risdate>2022</risdate><volume>26</volume><issue>14</issue><spage>3873</spage><epage>3890</epage><pages>3873-3890</pages><issn>1582-1838</issn><eissn>1582-4934</eissn><abstract>Despite advances in molecular characterization, glioblastoma (GBM) remains the most common and lethal brain tumour with high mortality rates in both paediatric and adult patients. The signal transducer and activator of transcription 3 (STAT3) is an important oncogenic driver of GBM. Although STAT3 reportedly plays a role in autophagy of some cells, its role in cancer cell autophagy remains unclear. In this study, we found Serine‐727 and Tyrosine‐705 phosphorylation of STAT3 was constitutive in GBM cell lines. Tyrosine phosphorylation of STAT3 in GBM cells suppresses autophagy, whereas knockout (KO) of STAT3 increases ULK1 gene expression, increases TSC2‐AMPKα‐ULK1 signalling, and increases lysosomal Cathepsin D processing, leading to the stimulation of autophagy. Rescue of STAT3‐KO cells by the enforced expression of wild‐type (WT) STAT3 reverses these pathways and inhibits autophagy. Conversely, expression of Y705F‐ and S727A‐STAT3 phosphorylation deficient mutants in STAT3‐KO cells did not suppress autophagy. Inhibition of ULK1 activity (by treatment with MRT68921) or its expression (by siRNA knockdown) in STAT3‐KO cells inhibits autophagy and sensitizes cells to apoptosis. Taken together, our findings suggest that serine and tyrosine phosphorylation of STAT3 play critical roles in STAT3‐dependent autophagy in GBM, and thus are potential targets to treat GBM.</abstract><cop>England</cop><pub>John Wiley & Sons, Inc</pub><pmid>35670018</pmid><doi>10.1111/jcmm.17421</doi><tpages>18</tpages><orcidid>https://orcid.org/0000-0003-4443-9691</orcidid><orcidid>https://orcid.org/0000-0003-2809-1234</orcidid><orcidid>https://orcid.org/0000-0003-3542-8376</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1582-1838 |
ispartof | Journal of cellular and molecular medicine, 2022-07, Vol.26 (14), p.3873-3890 |
issn | 1582-1838 1582-4934 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9279602 |
source | DOAJ Directory of Open Access Journals; Access via Wiley Online Library; EZB-FREE-00999 freely available EZB journals; Wiley Online Library (Open Access Collection); PubMed Central |
subjects | Antibodies Apoptosis Atg14 Autophagy Beclin1 Biotechnology Brain cancer Brain tumors Caspase‐3 Cathepsin D CRISPR Deficient mutant Gene expression Glioblastoma Glioblastoma cells LC3‐I/LC3‐II Prom1/CD133 Medical prognosis MRT68921 Original Phosphatase Phosphorylation Proteins RAD001 (Everolimus) Reagents Sequestome/p62 autophagy flux mTORC1/2 Serine Signal transduction siRNA Software Stat3 protein Targeted cancer therapy TSC2 gene tuberin/TSC2 Tumorigenesis Tyrosine |
title | STAT3 suppresses the AMPKα/ULK1‐dependent induction of autophagy in glioblastoma cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A52%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=STAT3%20suppresses%20the%20AMPK%CE%B1/ULK1%E2%80%90dependent%20induction%20of%20autophagy%20in%20glioblastoma%20cells&rft.jtitle=Journal%20of%20cellular%20and%20molecular%20medicine&rft.au=Bhattacharya,%20Sujoy&rft.date=2022-07&rft.volume=26&rft.issue=14&rft.spage=3873&rft.epage=3890&rft.pages=3873-3890&rft.issn=1582-1838&rft.eissn=1582-4934&rft_id=info:doi/10.1111/jcmm.17421&rft_dat=%3Cproquest_pubme%3E2688770395%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688770395&rft_id=info:pmid/35670018&rfr_iscdi=true |