Directional ballistic transport in the two-dimensional metal PdCoO2

In an idealized infinite crystal, the material properties are constrained by the symmetries of the unit cell. The point-group symmetry is broken by the sample shape of any finite crystal, but this is commonly unobservable in macroscopic metals. To sense the shape-induced symmetry lowering in such me...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2022-07, Vol.18 (7), p.819-824
Hauptverfasser: Bachmann, Maja D., Sharpe, Aaron L., Baker, Graham, Barnard, Arthur W., Putzke, Carsten, Scaffidi, Thomas, Nandi, Nabhanila, McGuinness, Philippa H., Zhakina, Elina, Moravec, Michal, Khim, Seunghyun, König, Markus, Goldhaber-Gordon, David, Bonn, Douglas A., Mackenzie, Andrew P., Moll, Philip J. W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In an idealized infinite crystal, the material properties are constrained by the symmetries of the unit cell. The point-group symmetry is broken by the sample shape of any finite crystal, but this is commonly unobservable in macroscopic metals. To sense the shape-induced symmetry lowering in such metals, long-lived bulk states originating from an anisotropic Fermi surface are needed. Here we show how a strongly facetted Fermi surface and the long quasiparticle mean free path present in microstructures of PdCoO 2 yield an in-plane resistivity anisotropy that is forbidden by symmetry on an infinite hexagonal lattice. We fabricate bar-shaped transport devices narrower than the mean free path from single crystals using focused ion beam milling, such that the ballistic charge carriers at low temperatures frequently collide with both of the side walls that define the channel. Two symmetry-forbidden transport signatures appear: the in-plane resistivity anisotropy exceeds a factor of 2, and a transverse voltage appears in zero magnetic field. Using ballistic Monte Carlo simulations and a numerical solution of the Boltzmann equation, we identify the orientation of the narrow channel as the source of symmetry breaking. Electrons in PdCoO 2 can travel a long way before being scattered, and their band structure is such that they can travel in only one of three directions. As a result, the current flow through this nanoscale conductor can be very efficient.
ISSN:1745-2473
1745-2481
DOI:10.1038/s41567-022-01570-7