Structural and functional comparison of magnesium transporters throughout evolution
Magnesium (Mg 2+ ) is the most prevalent divalent intracellular cation. As co-factor in many enzymatic reactions, Mg 2+ is essential for protein synthesis, energy production, and DNA stability. Disturbances in intracellular Mg 2+ concentrations, therefore, unequivocally result in delayed cell growth...
Gespeichert in:
Veröffentlicht in: | Cellular and molecular life sciences : CMLS 2022-08, Vol.79 (8), p.418-418, Article 418 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 418 |
---|---|
container_issue | 8 |
container_start_page | 418 |
container_title | Cellular and molecular life sciences : CMLS |
container_volume | 79 |
creator | Franken, G. A. C. Huynen, M. A. Martínez-Cruz, L. A. Bindels, R. J. M. de Baaij, J. H. F. |
description | Magnesium (Mg
2+
) is the most prevalent divalent intracellular cation. As co-factor in many enzymatic reactions, Mg
2+
is essential for protein synthesis, energy production, and DNA stability. Disturbances in intracellular Mg
2+
concentrations, therefore, unequivocally result in delayed cell growth and metabolic defects. To maintain physiological Mg
2+
levels, all organisms rely on balanced Mg
2+
influx and efflux via Mg
2+
channels and transporters. This review compares the structure and the function of prokaryotic Mg
2+
transporters and their eukaryotic counterparts. In prokaryotes, cellular Mg
2+
homeostasis is orchestrated via the CorA, MgtA/B, MgtE, and CorB/C Mg
2+
transporters. For CorA, MgtE, and CorB/C, the motifs that form the selectivity pore are conserved during evolution. These findings suggest that CNNM proteins, the vertebrate orthologues of CorB/C, also have Mg
2+
transport capacity. Whereas CorA and CorB/C proteins share the gross quaternary structure and functional properties with their respective orthologues, the MgtE channel only shares the selectivity pore with SLC41 Na
+
/Mg
2+
transporters. In eukaryotes, TRPM6 and TRPM7 Mg
2+
channels provide an additional Mg
2+
transport mechanism, consisting of a fusion of channel with a kinase. The unique features these TRP channels allow the integration of hormonal, cellular, and transcriptional regulatory pathways that determine their Mg
2+
transport capacity. Our review demonstrates that understanding the structure and function of prokaryotic magnesiotropic proteins aids in our basic understanding of Mg
2+
transport. |
doi_str_mv | 10.1007/s00018-022-04442-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9276622</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688282422</sourcerecordid><originalsourceid>FETCH-LOGICAL-c500t-edee3dd2582915c78fce42dd7949d7bbafce020299ed359200c9b21835855a3c3</originalsourceid><addsrcrecordid>eNp9kUtr3DAUhUVoyKv9A10ZuunG6dW1ZUubQglpUghkkQSyExpJnnGwpYkeA_33VeKhoV1kde9F3zkcdAj5TOGcAvTfIgBQXgNiDW3bYs0PyAltEWoBPf2w3zuOj8fkNManQjOO3RE5bhingjXshNzdpZB1ykFNlXKmGrLTafSunNrPWxXG6F3lh2pWa2fjmOcqBeXi1odkQ6zSJvi83vicKrvzU37RfiSHg5qi_bSfZ-Th5-X9xXV9c3v16-LHTa0ZQKqtsbYxBksmQZnu-aBti8b0ohWmX61UuQEBhbCmYQIBtFgh5SU8Y6rRzRn5vvhu82q2RltXok1yG8ZZhd_Sq1H---LGjVz7nRTYdx1iMfi6Nwj-OduY5DxGbadJOetzlNhxzjrOoC_ol__QJ59D-aaFQo7tqyEulA4-xmCHv2EoyJfO5NKZLJ3J184kL6JmEcUCu7UNb9bvqP4AdX2a4w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688282422</pqid></control><display><type>article</type><title>Structural and functional comparison of magnesium transporters throughout evolution</title><source>SpringerNature Journals</source><source>PubMed Central</source><creator>Franken, G. A. C. ; Huynen, M. A. ; Martínez-Cruz, L. A. ; Bindels, R. J. M. ; de Baaij, J. H. F.</creator><creatorcontrib>Franken, G. A. C. ; Huynen, M. A. ; Martínez-Cruz, L. A. ; Bindels, R. J. M. ; de Baaij, J. H. F.</creatorcontrib><description>Magnesium (Mg
2+
) is the most prevalent divalent intracellular cation. As co-factor in many enzymatic reactions, Mg
2+
is essential for protein synthesis, energy production, and DNA stability. Disturbances in intracellular Mg
2+
concentrations, therefore, unequivocally result in delayed cell growth and metabolic defects. To maintain physiological Mg
2+
levels, all organisms rely on balanced Mg
2+
influx and efflux via Mg
2+
channels and transporters. This review compares the structure and the function of prokaryotic Mg
2+
transporters and their eukaryotic counterparts. In prokaryotes, cellular Mg
2+
homeostasis is orchestrated via the CorA, MgtA/B, MgtE, and CorB/C Mg
2+
transporters. For CorA, MgtE, and CorB/C, the motifs that form the selectivity pore are conserved during evolution. These findings suggest that CNNM proteins, the vertebrate orthologues of CorB/C, also have Mg
2+
transport capacity. Whereas CorA and CorB/C proteins share the gross quaternary structure and functional properties with their respective orthologues, the MgtE channel only shares the selectivity pore with SLC41 Na
+
/Mg
2+
transporters. In eukaryotes, TRPM6 and TRPM7 Mg
2+
channels provide an additional Mg
2+
transport mechanism, consisting of a fusion of channel with a kinase. The unique features these TRP channels allow the integration of hormonal, cellular, and transcriptional regulatory pathways that determine their Mg
2+
transport capacity. Our review demonstrates that understanding the structure and function of prokaryotic magnesiotropic proteins aids in our basic understanding of Mg
2+
transport.</description><identifier>ISSN: 1420-682X</identifier><identifier>EISSN: 1420-9071</identifier><identifier>DOI: 10.1007/s00018-022-04442-8</identifier><identifier>PMID: 35819535</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Biochemistry ; Biomedical and Life Sciences ; Biomedicine ; Cell Biology ; Channels ; DNA biosynthesis ; Efflux ; Eukaryotes ; Evolution ; Homeostasis ; Intracellular ; Kinases ; Life Sciences ; Magnesium ; Prokaryotes ; Protein biosynthesis ; Protein structure ; Protein synthesis ; Proteins ; Quaternary structure ; Review ; Selectivity ; Structure-function relationships ; Transient receptor potential proteins ; Vertebrates</subject><ispartof>Cellular and molecular life sciences : CMLS, 2022-08, Vol.79 (8), p.418-418, Article 418</ispartof><rights>The Author(s) 2022</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c500t-edee3dd2582915c78fce42dd7949d7bbafce020299ed359200c9b21835855a3c3</citedby><cites>FETCH-LOGICAL-c500t-edee3dd2582915c78fce42dd7949d7bbafce020299ed359200c9b21835855a3c3</cites><orcidid>0000-0003-2372-8486</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276622/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9276622/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,27931,27932,41495,42564,51326,53798,53800</link.rule.ids></links><search><creatorcontrib>Franken, G. A. C.</creatorcontrib><creatorcontrib>Huynen, M. A.</creatorcontrib><creatorcontrib>Martínez-Cruz, L. A.</creatorcontrib><creatorcontrib>Bindels, R. J. M.</creatorcontrib><creatorcontrib>de Baaij, J. H. F.</creatorcontrib><title>Structural and functional comparison of magnesium transporters throughout evolution</title><title>Cellular and molecular life sciences : CMLS</title><addtitle>Cell. Mol. Life Sci</addtitle><description>Magnesium (Mg
2+
) is the most prevalent divalent intracellular cation. As co-factor in many enzymatic reactions, Mg
2+
is essential for protein synthesis, energy production, and DNA stability. Disturbances in intracellular Mg
2+
concentrations, therefore, unequivocally result in delayed cell growth and metabolic defects. To maintain physiological Mg
2+
levels, all organisms rely on balanced Mg
2+
influx and efflux via Mg
2+
channels and transporters. This review compares the structure and the function of prokaryotic Mg
2+
transporters and their eukaryotic counterparts. In prokaryotes, cellular Mg
2+
homeostasis is orchestrated via the CorA, MgtA/B, MgtE, and CorB/C Mg
2+
transporters. For CorA, MgtE, and CorB/C, the motifs that form the selectivity pore are conserved during evolution. These findings suggest that CNNM proteins, the vertebrate orthologues of CorB/C, also have Mg
2+
transport capacity. Whereas CorA and CorB/C proteins share the gross quaternary structure and functional properties with their respective orthologues, the MgtE channel only shares the selectivity pore with SLC41 Na
+
/Mg
2+
transporters. In eukaryotes, TRPM6 and TRPM7 Mg
2+
channels provide an additional Mg
2+
transport mechanism, consisting of a fusion of channel with a kinase. The unique features these TRP channels allow the integration of hormonal, cellular, and transcriptional regulatory pathways that determine their Mg
2+
transport capacity. Our review demonstrates that understanding the structure and function of prokaryotic magnesiotropic proteins aids in our basic understanding of Mg
2+
transport.</description><subject>Biochemistry</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cell Biology</subject><subject>Channels</subject><subject>DNA biosynthesis</subject><subject>Efflux</subject><subject>Eukaryotes</subject><subject>Evolution</subject><subject>Homeostasis</subject><subject>Intracellular</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Magnesium</subject><subject>Prokaryotes</subject><subject>Protein biosynthesis</subject><subject>Protein structure</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Quaternary structure</subject><subject>Review</subject><subject>Selectivity</subject><subject>Structure-function relationships</subject><subject>Transient receptor potential proteins</subject><subject>Vertebrates</subject><issn>1420-682X</issn><issn>1420-9071</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kUtr3DAUhUVoyKv9A10ZuunG6dW1ZUubQglpUghkkQSyExpJnnGwpYkeA_33VeKhoV1kde9F3zkcdAj5TOGcAvTfIgBQXgNiDW3bYs0PyAltEWoBPf2w3zuOj8fkNManQjOO3RE5bhingjXshNzdpZB1ykFNlXKmGrLTafSunNrPWxXG6F3lh2pWa2fjmOcqBeXi1odkQ6zSJvi83vicKrvzU37RfiSHg5qi_bSfZ-Th5-X9xXV9c3v16-LHTa0ZQKqtsbYxBksmQZnu-aBti8b0ohWmX61UuQEBhbCmYQIBtFgh5SU8Y6rRzRn5vvhu82q2RltXok1yG8ZZhd_Sq1H---LGjVz7nRTYdx1iMfi6Nwj-OduY5DxGbadJOetzlNhxzjrOoC_ol__QJ59D-aaFQo7tqyEulA4-xmCHv2EoyJfO5NKZLJ3J184kL6JmEcUCu7UNb9bvqP4AdX2a4w</recordid><startdate>20220801</startdate><enddate>20220801</enddate><creator>Franken, G. A. C.</creator><creator>Huynen, M. A.</creator><creator>Martínez-Cruz, L. A.</creator><creator>Bindels, R. J. M.</creator><creator>de Baaij, J. H. F.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7T5</scope><scope>7T7</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PATMY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2372-8486</orcidid></search><sort><creationdate>20220801</creationdate><title>Structural and functional comparison of magnesium transporters throughout evolution</title><author>Franken, G. A. C. ; Huynen, M. A. ; Martínez-Cruz, L. A. ; Bindels, R. J. M. ; de Baaij, J. H. F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c500t-edee3dd2582915c78fce42dd7949d7bbafce020299ed359200c9b21835855a3c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biochemistry</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cell Biology</topic><topic>Channels</topic><topic>DNA biosynthesis</topic><topic>Efflux</topic><topic>Eukaryotes</topic><topic>Evolution</topic><topic>Homeostasis</topic><topic>Intracellular</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Magnesium</topic><topic>Prokaryotes</topic><topic>Protein biosynthesis</topic><topic>Protein structure</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Quaternary structure</topic><topic>Review</topic><topic>Selectivity</topic><topic>Structure-function relationships</topic><topic>Transient receptor potential proteins</topic><topic>Vertebrates</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Franken, G. A. C.</creatorcontrib><creatorcontrib>Huynen, M. A.</creatorcontrib><creatorcontrib>Martínez-Cruz, L. A.</creatorcontrib><creatorcontrib>Bindels, R. J. M.</creatorcontrib><creatorcontrib>de Baaij, J. H. F.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cellular and molecular life sciences : CMLS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Franken, G. A. C.</au><au>Huynen, M. A.</au><au>Martínez-Cruz, L. A.</au><au>Bindels, R. J. M.</au><au>de Baaij, J. H. F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and functional comparison of magnesium transporters throughout evolution</atitle><jtitle>Cellular and molecular life sciences : CMLS</jtitle><stitle>Cell. Mol. Life Sci</stitle><date>2022-08-01</date><risdate>2022</risdate><volume>79</volume><issue>8</issue><spage>418</spage><epage>418</epage><pages>418-418</pages><artnum>418</artnum><issn>1420-682X</issn><eissn>1420-9071</eissn><abstract>Magnesium (Mg
2+
) is the most prevalent divalent intracellular cation. As co-factor in many enzymatic reactions, Mg
2+
is essential for protein synthesis, energy production, and DNA stability. Disturbances in intracellular Mg
2+
concentrations, therefore, unequivocally result in delayed cell growth and metabolic defects. To maintain physiological Mg
2+
levels, all organisms rely on balanced Mg
2+
influx and efflux via Mg
2+
channels and transporters. This review compares the structure and the function of prokaryotic Mg
2+
transporters and their eukaryotic counterparts. In prokaryotes, cellular Mg
2+
homeostasis is orchestrated via the CorA, MgtA/B, MgtE, and CorB/C Mg
2+
transporters. For CorA, MgtE, and CorB/C, the motifs that form the selectivity pore are conserved during evolution. These findings suggest that CNNM proteins, the vertebrate orthologues of CorB/C, also have Mg
2+
transport capacity. Whereas CorA and CorB/C proteins share the gross quaternary structure and functional properties with their respective orthologues, the MgtE channel only shares the selectivity pore with SLC41 Na
+
/Mg
2+
transporters. In eukaryotes, TRPM6 and TRPM7 Mg
2+
channels provide an additional Mg
2+
transport mechanism, consisting of a fusion of channel with a kinase. The unique features these TRP channels allow the integration of hormonal, cellular, and transcriptional regulatory pathways that determine their Mg
2+
transport capacity. Our review demonstrates that understanding the structure and function of prokaryotic magnesiotropic proteins aids in our basic understanding of Mg
2+
transport.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>35819535</pmid><doi>10.1007/s00018-022-04442-8</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0003-2372-8486</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1420-682X |
ispartof | Cellular and molecular life sciences : CMLS, 2022-08, Vol.79 (8), p.418-418, Article 418 |
issn | 1420-682X 1420-9071 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9276622 |
source | SpringerNature Journals; PubMed Central |
subjects | Biochemistry Biomedical and Life Sciences Biomedicine Cell Biology Channels DNA biosynthesis Efflux Eukaryotes Evolution Homeostasis Intracellular Kinases Life Sciences Magnesium Prokaryotes Protein biosynthesis Protein structure Protein synthesis Proteins Quaternary structure Review Selectivity Structure-function relationships Transient receptor potential proteins Vertebrates |
title | Structural and functional comparison of magnesium transporters throughout evolution |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T22%3A14%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20functional%20comparison%20of%20magnesium%20transporters%20throughout%20evolution&rft.jtitle=Cellular%20and%20molecular%20life%20sciences%20:%20CMLS&rft.au=Franken,%20G.%20A.%20C.&rft.date=2022-08-01&rft.volume=79&rft.issue=8&rft.spage=418&rft.epage=418&rft.pages=418-418&rft.artnum=418&rft.issn=1420-682X&rft.eissn=1420-9071&rft_id=info:doi/10.1007/s00018-022-04442-8&rft_dat=%3Cproquest_pubme%3E2688282422%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688282422&rft_id=info:pmid/35819535&rfr_iscdi=true |