Early expression of mature αβ TCR in CD4⁻CD8⁻ T cell progenitors enables MHC to drive development of T-ALL bearing NOTCH mutations
During normal T cell development in mouse and human, a low-frequency population of immature CD4⁻CD8⁻ double-negative (DN) thymocytes expresses early, mature αβ T cell antigen receptor (TCR). We report that these early αβ TCR+ DN (EADN) cells are DN3b-DN4 stage and require CD3δ but not major histocom...
Gespeichert in:
Veröffentlicht in: | Proceedings of the National Academy of Sciences - PNAS 2022-07, Vol.119 (27), p.1-10 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | 27 |
container_start_page | 1 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 119 |
creator | Laffey, Kimberly G. Stiles, Robert J. Ludescher, Melissa J. Davis, Tessa R. Khwaja, Shariq S. Bram, Richard J. Wettstein, Peter J. Ramachandran, Venkataraman Parks, Christopher A. Reyes, Edwin E. Ferrer, Alejandro Canfield, Jenna M. Johnson, Cory E. Hammer, Richard D. Gil, Diana Schrum, Adam G. |
description | During normal T cell development in mouse and human, a low-frequency population of immature CD4⁻CD8⁻ double-negative (DN) thymocytes expresses early, mature αβ T cell antigen receptor (TCR). We report that these early αβ TCR+ DN (EADN) cells are DN3b-DN4 stage and require CD3δ but not major histocompatibility complex (MHC) for their generation/detection. When MHC - is present, however, EADN cells can respond to it, displaying a degree of coreceptor-independent MHC reactivity not typical of mature, conventional αβ T cells. We found these data to be connected with observations that EADN cells were susceptible to T cell acute lymphoblastic leukemia (T-ALL) transformation in both humans and mice. Using the OT-1 TCR transgenic system to model EADN-stage αβ TCR expression, we found that EADN leukemogenesis required MHC to induce development of T-ALL bearing NOTCH1 mutations. This leukemia-driving MHC requirement could be lost, however, upon passaging the tumors in vivo, even when matching MHC was continuously present in recipient animals and on the tumor cells themselves. These data demonstrate that MHC:TCR signaling can be required to initiate a cancer phenotype from an understudied developmental state that appears to be represented in the mouse and human disease spectrum. |
doi_str_mv | 10.1073/pnas.2118529119 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9271211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27153052</jstor_id><sourcerecordid>27153052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c304t-df248feb812a145ee1c36c7bf04e6699489f091a8f7d97b2432b7619737898ad3</originalsourceid><addsrcrecordid>eNpdkc1u1DAUhS0EotPCmhWSJTZs0tqO458NUpW2FGmgEhrWlpPcDBkldrCTEV2y43Vgyzv0IXgSHE1VBBt74e8en3sOQi8oOaVE5mejs_GUUaoKpinVj9CKEk0zwTV5jFaEMJkpzvgROo5xRwjRhSJP0VFeSCEFJyv0_dKG_hbD1zFAjJ132Ld4sNMcAN_9uPuJN-VH3DlcXvDf336VFyqdeINr6Hs8Br8F100-RAzOVj1E_P66xJPHTej2gBvYQ-_HAdy0yG6y8_UaV2BD57b4w82mvMbDPNkpfRufoSet7SM8v79P0Kery0Rk65u378rzdVbnhE9Z0zKuWqgUZZbyAoDWuahl1RIOQmjNlW5TAla1stGyYjxnlRRUy1wqrWyTn6A3B91xrgZo6uQt2N6MoRtsuDXedubfF9d9Nlu_N5pJmpJOAq_vBYL_MkOczNDFJQ_rwM_RMKGYVJILldBX_6E7PweX1luoolCKkoU6O1B18DEGaB_MUGKWls3Ssvnbcpp4eZjYxRT-A54MFjkpWP4HorOmEA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685588108</pqid></control><display><type>article</type><title>Early expression of mature αβ TCR in CD4⁻CD8⁻ T cell progenitors enables MHC to drive development of T-ALL bearing NOTCH mutations</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Laffey, Kimberly G. ; Stiles, Robert J. ; Ludescher, Melissa J. ; Davis, Tessa R. ; Khwaja, Shariq S. ; Bram, Richard J. ; Wettstein, Peter J. ; Ramachandran, Venkataraman ; Parks, Christopher A. ; Reyes, Edwin E. ; Ferrer, Alejandro ; Canfield, Jenna M. ; Johnson, Cory E. ; Hammer, Richard D. ; Gil, Diana ; Schrum, Adam G.</creator><creatorcontrib>Laffey, Kimberly G. ; Stiles, Robert J. ; Ludescher, Melissa J. ; Davis, Tessa R. ; Khwaja, Shariq S. ; Bram, Richard J. ; Wettstein, Peter J. ; Ramachandran, Venkataraman ; Parks, Christopher A. ; Reyes, Edwin E. ; Ferrer, Alejandro ; Canfield, Jenna M. ; Johnson, Cory E. ; Hammer, Richard D. ; Gil, Diana ; Schrum, Adam G.</creatorcontrib><description>During normal T cell development in mouse and human, a low-frequency population of immature CD4⁻CD8⁻ double-negative (DN) thymocytes expresses early, mature αβ T cell antigen receptor (TCR). We report that these early αβ TCR+ DN (EADN) cells are DN3b-DN4 stage and require CD3δ but not major histocompatibility complex (MHC) for their generation/detection. When MHC - is present, however, EADN cells can respond to it, displaying a degree of coreceptor-independent MHC reactivity not typical of mature, conventional αβ T cells. We found these data to be connected with observations that EADN cells were susceptible to T cell acute lymphoblastic leukemia (T-ALL) transformation in both humans and mice. Using the OT-1 TCR transgenic system to model EADN-stage αβ TCR expression, we found that EADN leukemogenesis required MHC to induce development of T-ALL bearing NOTCH1 mutations. This leukemia-driving MHC requirement could be lost, however, upon passaging the tumors in vivo, even when matching MHC was continuously present in recipient animals and on the tumor cells themselves. These data demonstrate that MHC:TCR signaling can be required to initiate a cancer phenotype from an understudied developmental state that appears to be represented in the mouse and human disease spectrum.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2118529119</identifier><identifier>PMID: 35767640</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Acute lymphoblastic leukemia ; Antigens ; Biological Sciences ; CD4 antigen ; CD8 antigen ; Genetic transformation ; Leukemia ; Leukemogenesis ; Lymphocytes ; Lymphocytes T ; Major histocompatibility complex ; Mutation ; Notch1 protein ; Phenotypes ; Progenitor cells ; T cell receptors ; Thymocytes ; Tumor cells ; Tumors</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-07, Vol.119 (27), p.1-10</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Jul 5, 2022</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c304t-df248feb812a145ee1c36c7bf04e6699489f091a8f7d97b2432b7619737898ad3</cites><orcidid>0000-0001-8386-7918 ; 0000-0001-7322-9875 ; 0000-0003-0660-7850 ; 0000-0001-8794-0019 ; 0000-0001-5980-7392</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271211/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271211/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27902,27903,53768,53770</link.rule.ids></links><search><creatorcontrib>Laffey, Kimberly G.</creatorcontrib><creatorcontrib>Stiles, Robert J.</creatorcontrib><creatorcontrib>Ludescher, Melissa J.</creatorcontrib><creatorcontrib>Davis, Tessa R.</creatorcontrib><creatorcontrib>Khwaja, Shariq S.</creatorcontrib><creatorcontrib>Bram, Richard J.</creatorcontrib><creatorcontrib>Wettstein, Peter J.</creatorcontrib><creatorcontrib>Ramachandran, Venkataraman</creatorcontrib><creatorcontrib>Parks, Christopher A.</creatorcontrib><creatorcontrib>Reyes, Edwin E.</creatorcontrib><creatorcontrib>Ferrer, Alejandro</creatorcontrib><creatorcontrib>Canfield, Jenna M.</creatorcontrib><creatorcontrib>Johnson, Cory E.</creatorcontrib><creatorcontrib>Hammer, Richard D.</creatorcontrib><creatorcontrib>Gil, Diana</creatorcontrib><creatorcontrib>Schrum, Adam G.</creatorcontrib><title>Early expression of mature αβ TCR in CD4⁻CD8⁻ T cell progenitors enables MHC to drive development of T-ALL bearing NOTCH mutations</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>During normal T cell development in mouse and human, a low-frequency population of immature CD4⁻CD8⁻ double-negative (DN) thymocytes expresses early, mature αβ T cell antigen receptor (TCR). We report that these early αβ TCR+ DN (EADN) cells are DN3b-DN4 stage and require CD3δ but not major histocompatibility complex (MHC) for their generation/detection. When MHC - is present, however, EADN cells can respond to it, displaying a degree of coreceptor-independent MHC reactivity not typical of mature, conventional αβ T cells. We found these data to be connected with observations that EADN cells were susceptible to T cell acute lymphoblastic leukemia (T-ALL) transformation in both humans and mice. Using the OT-1 TCR transgenic system to model EADN-stage αβ TCR expression, we found that EADN leukemogenesis required MHC to induce development of T-ALL bearing NOTCH1 mutations. This leukemia-driving MHC requirement could be lost, however, upon passaging the tumors in vivo, even when matching MHC was continuously present in recipient animals and on the tumor cells themselves. These data demonstrate that MHC:TCR signaling can be required to initiate a cancer phenotype from an understudied developmental state that appears to be represented in the mouse and human disease spectrum.</description><subject>Acute lymphoblastic leukemia</subject><subject>Antigens</subject><subject>Biological Sciences</subject><subject>CD4 antigen</subject><subject>CD8 antigen</subject><subject>Genetic transformation</subject><subject>Leukemia</subject><subject>Leukemogenesis</subject><subject>Lymphocytes</subject><subject>Lymphocytes T</subject><subject>Major histocompatibility complex</subject><subject>Mutation</subject><subject>Notch1 protein</subject><subject>Phenotypes</subject><subject>Progenitor cells</subject><subject>T cell receptors</subject><subject>Thymocytes</subject><subject>Tumor cells</subject><subject>Tumors</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkc1u1DAUhS0EotPCmhWSJTZs0tqO458NUpW2FGmgEhrWlpPcDBkldrCTEV2y43Vgyzv0IXgSHE1VBBt74e8en3sOQi8oOaVE5mejs_GUUaoKpinVj9CKEk0zwTV5jFaEMJkpzvgROo5xRwjRhSJP0VFeSCEFJyv0_dKG_hbD1zFAjJ132Ld4sNMcAN_9uPuJN-VH3DlcXvDf336VFyqdeINr6Hs8Br8F100-RAzOVj1E_P66xJPHTej2gBvYQ-_HAdy0yG6y8_UaV2BD57b4w82mvMbDPNkpfRufoSet7SM8v79P0Kery0Rk65u378rzdVbnhE9Z0zKuWqgUZZbyAoDWuahl1RIOQmjNlW5TAla1stGyYjxnlRRUy1wqrWyTn6A3B91xrgZo6uQt2N6MoRtsuDXedubfF9d9Nlu_N5pJmpJOAq_vBYL_MkOczNDFJQ_rwM_RMKGYVJILldBX_6E7PweX1luoolCKkoU6O1B18DEGaB_MUGKWls3Ssvnbcpp4eZjYxRT-A54MFjkpWP4HorOmEA</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Laffey, Kimberly G.</creator><creator>Stiles, Robert J.</creator><creator>Ludescher, Melissa J.</creator><creator>Davis, Tessa R.</creator><creator>Khwaja, Shariq S.</creator><creator>Bram, Richard J.</creator><creator>Wettstein, Peter J.</creator><creator>Ramachandran, Venkataraman</creator><creator>Parks, Christopher A.</creator><creator>Reyes, Edwin E.</creator><creator>Ferrer, Alejandro</creator><creator>Canfield, Jenna M.</creator><creator>Johnson, Cory E.</creator><creator>Hammer, Richard D.</creator><creator>Gil, Diana</creator><creator>Schrum, Adam G.</creator><general>National Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8386-7918</orcidid><orcidid>https://orcid.org/0000-0001-7322-9875</orcidid><orcidid>https://orcid.org/0000-0003-0660-7850</orcidid><orcidid>https://orcid.org/0000-0001-8794-0019</orcidid><orcidid>https://orcid.org/0000-0001-5980-7392</orcidid></search><sort><creationdate>20220705</creationdate><title>Early expression of mature αβ TCR in CD4⁻CD8⁻ T cell progenitors enables MHC to drive development of T-ALL bearing NOTCH mutations</title><author>Laffey, Kimberly G. ; Stiles, Robert J. ; Ludescher, Melissa J. ; Davis, Tessa R. ; Khwaja, Shariq S. ; Bram, Richard J. ; Wettstein, Peter J. ; Ramachandran, Venkataraman ; Parks, Christopher A. ; Reyes, Edwin E. ; Ferrer, Alejandro ; Canfield, Jenna M. ; Johnson, Cory E. ; Hammer, Richard D. ; Gil, Diana ; Schrum, Adam G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c304t-df248feb812a145ee1c36c7bf04e6699489f091a8f7d97b2432b7619737898ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Acute lymphoblastic leukemia</topic><topic>Antigens</topic><topic>Biological Sciences</topic><topic>CD4 antigen</topic><topic>CD8 antigen</topic><topic>Genetic transformation</topic><topic>Leukemia</topic><topic>Leukemogenesis</topic><topic>Lymphocytes</topic><topic>Lymphocytes T</topic><topic>Major histocompatibility complex</topic><topic>Mutation</topic><topic>Notch1 protein</topic><topic>Phenotypes</topic><topic>Progenitor cells</topic><topic>T cell receptors</topic><topic>Thymocytes</topic><topic>Tumor cells</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laffey, Kimberly G.</creatorcontrib><creatorcontrib>Stiles, Robert J.</creatorcontrib><creatorcontrib>Ludescher, Melissa J.</creatorcontrib><creatorcontrib>Davis, Tessa R.</creatorcontrib><creatorcontrib>Khwaja, Shariq S.</creatorcontrib><creatorcontrib>Bram, Richard J.</creatorcontrib><creatorcontrib>Wettstein, Peter J.</creatorcontrib><creatorcontrib>Ramachandran, Venkataraman</creatorcontrib><creatorcontrib>Parks, Christopher A.</creatorcontrib><creatorcontrib>Reyes, Edwin E.</creatorcontrib><creatorcontrib>Ferrer, Alejandro</creatorcontrib><creatorcontrib>Canfield, Jenna M.</creatorcontrib><creatorcontrib>Johnson, Cory E.</creatorcontrib><creatorcontrib>Hammer, Richard D.</creatorcontrib><creatorcontrib>Gil, Diana</creatorcontrib><creatorcontrib>Schrum, Adam G.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laffey, Kimberly G.</au><au>Stiles, Robert J.</au><au>Ludescher, Melissa J.</au><au>Davis, Tessa R.</au><au>Khwaja, Shariq S.</au><au>Bram, Richard J.</au><au>Wettstein, Peter J.</au><au>Ramachandran, Venkataraman</au><au>Parks, Christopher A.</au><au>Reyes, Edwin E.</au><au>Ferrer, Alejandro</au><au>Canfield, Jenna M.</au><au>Johnson, Cory E.</au><au>Hammer, Richard D.</au><au>Gil, Diana</au><au>Schrum, Adam G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Early expression of mature αβ TCR in CD4⁻CD8⁻ T cell progenitors enables MHC to drive development of T-ALL bearing NOTCH mutations</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2022-07-05</date><risdate>2022</risdate><volume>119</volume><issue>27</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>During normal T cell development in mouse and human, a low-frequency population of immature CD4⁻CD8⁻ double-negative (DN) thymocytes expresses early, mature αβ T cell antigen receptor (TCR). We report that these early αβ TCR+ DN (EADN) cells are DN3b-DN4 stage and require CD3δ but not major histocompatibility complex (MHC) for their generation/detection. When MHC - is present, however, EADN cells can respond to it, displaying a degree of coreceptor-independent MHC reactivity not typical of mature, conventional αβ T cells. We found these data to be connected with observations that EADN cells were susceptible to T cell acute lymphoblastic leukemia (T-ALL) transformation in both humans and mice. Using the OT-1 TCR transgenic system to model EADN-stage αβ TCR expression, we found that EADN leukemogenesis required MHC to induce development of T-ALL bearing NOTCH1 mutations. This leukemia-driving MHC requirement could be lost, however, upon passaging the tumors in vivo, even when matching MHC was continuously present in recipient animals and on the tumor cells themselves. These data demonstrate that MHC:TCR signaling can be required to initiate a cancer phenotype from an understudied developmental state that appears to be represented in the mouse and human disease spectrum.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>35767640</pmid><doi>10.1073/pnas.2118529119</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-8386-7918</orcidid><orcidid>https://orcid.org/0000-0001-7322-9875</orcidid><orcidid>https://orcid.org/0000-0003-0660-7850</orcidid><orcidid>https://orcid.org/0000-0001-8794-0019</orcidid><orcidid>https://orcid.org/0000-0001-5980-7392</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2022-07, Vol.119 (27), p.1-10 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9271211 |
source | PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Acute lymphoblastic leukemia Antigens Biological Sciences CD4 antigen CD8 antigen Genetic transformation Leukemia Leukemogenesis Lymphocytes Lymphocytes T Major histocompatibility complex Mutation Notch1 protein Phenotypes Progenitor cells T cell receptors Thymocytes Tumor cells Tumors |
title | Early expression of mature αβ TCR in CD4⁻CD8⁻ T cell progenitors enables MHC to drive development of T-ALL bearing NOTCH mutations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A13%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Early%20expression%20of%20mature%20%CE%B1%CE%B2%20TCR%20in%20CD4%E2%81%BBCD8%E2%81%BB%20T%20cell%20progenitors%20enables%20MHC%20to%20drive%20development%20of%20T-ALL%20bearing%20NOTCH%20mutations&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Laffey,%20Kimberly%20G.&rft.date=2022-07-05&rft.volume=119&rft.issue=27&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2118529119&rft_dat=%3Cjstor_pubme%3E27153052%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685588108&rft_id=info:pmid/35767640&rft_jstor_id=27153052&rfr_iscdi=true |