Organic carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars

The Sample Analysis at Mars instrument stepped combustion experiment on a Yellowknife Bay mudstone at Gale crater, Mars revealed the presence of organic carbon of Martian and meteoritic origins. The combustion experiment was designed to access refractory organic carbon in Mars surface sediments by h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2022-07, Vol.119 (27), p.1-8
Hauptverfasser: Stern, Jennifer C., Malespin, Charles A., Eigenbrode, Jennifer L., Webster, Christopher R., Flesch, Greg, Franz, Heather B., Graham, Heather V., House, Christopher H., Sutter, Brad, Archer, Paul Douglas, Hofmann, Amy E., McAdam, Amy C., Ming, Douglas W., Navarro-Gonzalez, Rafael, Steele, Andrew, Freissinet, Caroline, Mahaffy, Paul R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue 27
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Stern, Jennifer C.
Malespin, Charles A.
Eigenbrode, Jennifer L.
Webster, Christopher R.
Flesch, Greg
Franz, Heather B.
Graham, Heather V.
House, Christopher H.
Sutter, Brad
Archer, Paul Douglas
Hofmann, Amy E.
McAdam, Amy C.
Ming, Douglas W.
Navarro-Gonzalez, Rafael
Steele, Andrew
Freissinet, Caroline
Mahaffy, Paul R.
description The Sample Analysis at Mars instrument stepped combustion experiment on a Yellowknife Bay mudstone at Gale crater, Mars revealed the presence of organic carbon of Martian and meteoritic origins. The combustion experiment was designed to access refractory organic carbon in Mars surface sediments by heating samples in the presence of oxygen to combust carbon to CO₂. Four steps were performed, two at low temperatures (less than ∼550 °C) and two at high temperatures (up to ∼870 °C). More than 950 μg C/g was released at low temperatures (with an isotopic composition of δ13C = +1.5 ± 3.8) representing a minimum of 431 μg C/g indigenous organic and inorganic Martian carbon components. Above 550 °C, 273 ± 30 μg C/g was evolved as CO₂ and CO (with estimated δ13C = −32.9 to −10.1 for organic carbon). The source of high temperature organic carbon cannot be definitively confirmed by isotopic composition, which is consistent with macromolecular organic carbon of igneous origin, meteoritic infall, or diagenetically altered biomass, or a combination of these. If from allochthonous deposition, organic carbon could have supported both prebiotic organic chemistry and heterotrophic metabolism at Gale crater, Mars, at ∼3.5 Ga.
doi_str_mv 10.1073/pnas.2201139119
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9271195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27153029</jstor_id><sourcerecordid>27153029</sourcerecordid><originalsourceid>FETCH-LOGICAL-a544t-b9ec28ca063c97a8b36a13a1475e6067385c32bc18979204e2eb71ff6bfd2ab83</originalsourceid><addsrcrecordid>eNpdkd1LHDEUxYNYdGv77JMw4IsUZr1JJl8vhUVaLWwRSvsckmxGs8wm22RG8L9vlhGlPoWQ3zm59xyEzjEsMQh6vY-mLAkBjKnCWB2hBQaFW94pOEYLACJa2ZHuFH0sZQsAikk4QaeUCaY4Fwv06z4_mBhc40y2KTYuRefjmM0YUixNiA1dstaGYaj39tmb3KZh0wzGTWXMIfpmN23KmKIvTeqbnyaXT-hDb4biP7-cZ-jP92-_b-7a9f3tj5vVujWs68bWKu-IdAY4dUoYaSk3mBrcCeY5cEElc5RYh6USikDnibcC9z23_YYYK-kZ-jr77ie785t57EHvc9iZ_KyTCfr_lxge9UN60oqImhWrBl9mg8d3srvVWodYJg1UCCEJf8IVvnr5Lae_ky-j3oXi_DCY6NNUNOESS0x5BxW9fIdu05RjzeJAMSYZFQfqeqZcTqVk37-OgEEfytWHcvVbuVVxMSu2NfD8itdtGAWi6D_RSp_J</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685585370</pqid></control><display><type>article</type><title>Organic carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Stern, Jennifer C. ; Malespin, Charles A. ; Eigenbrode, Jennifer L. ; Webster, Christopher R. ; Flesch, Greg ; Franz, Heather B. ; Graham, Heather V. ; House, Christopher H. ; Sutter, Brad ; Archer, Paul Douglas ; Hofmann, Amy E. ; McAdam, Amy C. ; Ming, Douglas W. ; Navarro-Gonzalez, Rafael ; Steele, Andrew ; Freissinet, Caroline ; Mahaffy, Paul R.</creator><creatorcontrib>Stern, Jennifer C. ; Malespin, Charles A. ; Eigenbrode, Jennifer L. ; Webster, Christopher R. ; Flesch, Greg ; Franz, Heather B. ; Graham, Heather V. ; House, Christopher H. ; Sutter, Brad ; Archer, Paul Douglas ; Hofmann, Amy E. ; McAdam, Amy C. ; Ming, Douglas W. ; Navarro-Gonzalez, Rafael ; Steele, Andrew ; Freissinet, Caroline ; Mahaffy, Paul R.</creatorcontrib><description>The Sample Analysis at Mars instrument stepped combustion experiment on a Yellowknife Bay mudstone at Gale crater, Mars revealed the presence of organic carbon of Martian and meteoritic origins. The combustion experiment was designed to access refractory organic carbon in Mars surface sediments by heating samples in the presence of oxygen to combust carbon to CO₂. Four steps were performed, two at low temperatures (less than ∼550 °C) and two at high temperatures (up to ∼870 °C). More than 950 μg C/g was released at low temperatures (with an isotopic composition of δ13C = +1.5 ± 3.8) representing a minimum of 431 μg C/g indigenous organic and inorganic Martian carbon components. Above 550 °C, 273 ± 30 μg C/g was evolved as CO₂ and CO (with estimated δ13C = −32.9 to −10.1 for organic carbon). The source of high temperature organic carbon cannot be definitively confirmed by isotopic composition, which is consistent with macromolecular organic carbon of igneous origin, meteoritic infall, or diagenetically altered biomass, or a combination of these. If from allochthonous deposition, organic carbon could have supported both prebiotic organic chemistry and heterotrophic metabolism at Gale crater, Mars, at ∼3.5 Ga.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2201139119</identifier><identifier>PMID: 35759667</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Carbon ; Carbon dioxide ; Combustion ; Composition ; High temperature ; Isotopes ; Low temperature ; Macromolecules ; Mars craters ; Mars surface ; Mudstone ; Organic carbon ; Organic chemistry ; Physical Sciences ; Sciences of the Universe ; Sediments</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-07, Vol.119 (27), p.1-8</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Jul 5, 2022</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a544t-b9ec28ca063c97a8b36a13a1475e6067385c32bc18979204e2eb71ff6bfd2ab83</citedby><cites>FETCH-LOGICAL-a544t-b9ec28ca063c97a8b36a13a1475e6067385c32bc18979204e2eb71ff6bfd2ab83</cites><orcidid>0000-0002-0162-8807 ; 0000-0003-3089-1986 ; 0000-0002-4926-4985 ; 0000-0003-1896-1726 ; 0000-0001-6869-5118 ; 0000-0001-9716-5597 ; 0000-0002-6078-7621 ; 0000-0002-6528-330X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271195/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271195/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://insu.hal.science/insu-03777826$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Stern, Jennifer C.</creatorcontrib><creatorcontrib>Malespin, Charles A.</creatorcontrib><creatorcontrib>Eigenbrode, Jennifer L.</creatorcontrib><creatorcontrib>Webster, Christopher R.</creatorcontrib><creatorcontrib>Flesch, Greg</creatorcontrib><creatorcontrib>Franz, Heather B.</creatorcontrib><creatorcontrib>Graham, Heather V.</creatorcontrib><creatorcontrib>House, Christopher H.</creatorcontrib><creatorcontrib>Sutter, Brad</creatorcontrib><creatorcontrib>Archer, Paul Douglas</creatorcontrib><creatorcontrib>Hofmann, Amy E.</creatorcontrib><creatorcontrib>McAdam, Amy C.</creatorcontrib><creatorcontrib>Ming, Douglas W.</creatorcontrib><creatorcontrib>Navarro-Gonzalez, Rafael</creatorcontrib><creatorcontrib>Steele, Andrew</creatorcontrib><creatorcontrib>Freissinet, Caroline</creatorcontrib><creatorcontrib>Mahaffy, Paul R.</creatorcontrib><title>Organic carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>The Sample Analysis at Mars instrument stepped combustion experiment on a Yellowknife Bay mudstone at Gale crater, Mars revealed the presence of organic carbon of Martian and meteoritic origins. The combustion experiment was designed to access refractory organic carbon in Mars surface sediments by heating samples in the presence of oxygen to combust carbon to CO₂. Four steps were performed, two at low temperatures (less than ∼550 °C) and two at high temperatures (up to ∼870 °C). More than 950 μg C/g was released at low temperatures (with an isotopic composition of δ13C = +1.5 ± 3.8) representing a minimum of 431 μg C/g indigenous organic and inorganic Martian carbon components. Above 550 °C, 273 ± 30 μg C/g was evolved as CO₂ and CO (with estimated δ13C = −32.9 to −10.1 for organic carbon). The source of high temperature organic carbon cannot be definitively confirmed by isotopic composition, which is consistent with macromolecular organic carbon of igneous origin, meteoritic infall, or diagenetically altered biomass, or a combination of these. If from allochthonous deposition, organic carbon could have supported both prebiotic organic chemistry and heterotrophic metabolism at Gale crater, Mars, at ∼3.5 Ga.</description><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Combustion</subject><subject>Composition</subject><subject>High temperature</subject><subject>Isotopes</subject><subject>Low temperature</subject><subject>Macromolecules</subject><subject>Mars craters</subject><subject>Mars surface</subject><subject>Mudstone</subject><subject>Organic carbon</subject><subject>Organic chemistry</subject><subject>Physical Sciences</subject><subject>Sciences of the Universe</subject><subject>Sediments</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkd1LHDEUxYNYdGv77JMw4IsUZr1JJl8vhUVaLWwRSvsckmxGs8wm22RG8L9vlhGlPoWQ3zm59xyEzjEsMQh6vY-mLAkBjKnCWB2hBQaFW94pOEYLACJa2ZHuFH0sZQsAikk4QaeUCaY4Fwv06z4_mBhc40y2KTYuRefjmM0YUixNiA1dstaGYaj39tmb3KZh0wzGTWXMIfpmN23KmKIvTeqbnyaXT-hDb4biP7-cZ-jP92-_b-7a9f3tj5vVujWs68bWKu-IdAY4dUoYaSk3mBrcCeY5cEElc5RYh6USikDnibcC9z23_YYYK-kZ-jr77ie785t57EHvc9iZ_KyTCfr_lxge9UN60oqImhWrBl9mg8d3srvVWodYJg1UCCEJf8IVvnr5Lae_ky-j3oXi_DCY6NNUNOESS0x5BxW9fIdu05RjzeJAMSYZFQfqeqZcTqVk37-OgEEfytWHcvVbuVVxMSu2NfD8itdtGAWi6D_RSp_J</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Stern, Jennifer C.</creator><creator>Malespin, Charles A.</creator><creator>Eigenbrode, Jennifer L.</creator><creator>Webster, Christopher R.</creator><creator>Flesch, Greg</creator><creator>Franz, Heather B.</creator><creator>Graham, Heather V.</creator><creator>House, Christopher H.</creator><creator>Sutter, Brad</creator><creator>Archer, Paul Douglas</creator><creator>Hofmann, Amy E.</creator><creator>McAdam, Amy C.</creator><creator>Ming, Douglas W.</creator><creator>Navarro-Gonzalez, Rafael</creator><creator>Steele, Andrew</creator><creator>Freissinet, Caroline</creator><creator>Mahaffy, Paul R.</creator><general>National Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0162-8807</orcidid><orcidid>https://orcid.org/0000-0003-3089-1986</orcidid><orcidid>https://orcid.org/0000-0002-4926-4985</orcidid><orcidid>https://orcid.org/0000-0003-1896-1726</orcidid><orcidid>https://orcid.org/0000-0001-6869-5118</orcidid><orcidid>https://orcid.org/0000-0001-9716-5597</orcidid><orcidid>https://orcid.org/0000-0002-6078-7621</orcidid><orcidid>https://orcid.org/0000-0002-6528-330X</orcidid></search><sort><creationdate>20220705</creationdate><title>Organic carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars</title><author>Stern, Jennifer C. ; Malespin, Charles A. ; Eigenbrode, Jennifer L. ; Webster, Christopher R. ; Flesch, Greg ; Franz, Heather B. ; Graham, Heather V. ; House, Christopher H. ; Sutter, Brad ; Archer, Paul Douglas ; Hofmann, Amy E. ; McAdam, Amy C. ; Ming, Douglas W. ; Navarro-Gonzalez, Rafael ; Steele, Andrew ; Freissinet, Caroline ; Mahaffy, Paul R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a544t-b9ec28ca063c97a8b36a13a1475e6067385c32bc18979204e2eb71ff6bfd2ab83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Combustion</topic><topic>Composition</topic><topic>High temperature</topic><topic>Isotopes</topic><topic>Low temperature</topic><topic>Macromolecules</topic><topic>Mars craters</topic><topic>Mars surface</topic><topic>Mudstone</topic><topic>Organic carbon</topic><topic>Organic chemistry</topic><topic>Physical Sciences</topic><topic>Sciences of the Universe</topic><topic>Sediments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Stern, Jennifer C.</creatorcontrib><creatorcontrib>Malespin, Charles A.</creatorcontrib><creatorcontrib>Eigenbrode, Jennifer L.</creatorcontrib><creatorcontrib>Webster, Christopher R.</creatorcontrib><creatorcontrib>Flesch, Greg</creatorcontrib><creatorcontrib>Franz, Heather B.</creatorcontrib><creatorcontrib>Graham, Heather V.</creatorcontrib><creatorcontrib>House, Christopher H.</creatorcontrib><creatorcontrib>Sutter, Brad</creatorcontrib><creatorcontrib>Archer, Paul Douglas</creatorcontrib><creatorcontrib>Hofmann, Amy E.</creatorcontrib><creatorcontrib>McAdam, Amy C.</creatorcontrib><creatorcontrib>Ming, Douglas W.</creatorcontrib><creatorcontrib>Navarro-Gonzalez, Rafael</creatorcontrib><creatorcontrib>Steele, Andrew</creatorcontrib><creatorcontrib>Freissinet, Caroline</creatorcontrib><creatorcontrib>Mahaffy, Paul R.</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Stern, Jennifer C.</au><au>Malespin, Charles A.</au><au>Eigenbrode, Jennifer L.</au><au>Webster, Christopher R.</au><au>Flesch, Greg</au><au>Franz, Heather B.</au><au>Graham, Heather V.</au><au>House, Christopher H.</au><au>Sutter, Brad</au><au>Archer, Paul Douglas</au><au>Hofmann, Amy E.</au><au>McAdam, Amy C.</au><au>Ming, Douglas W.</au><au>Navarro-Gonzalez, Rafael</au><au>Steele, Andrew</au><au>Freissinet, Caroline</au><au>Mahaffy, Paul R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Organic carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2022-07-05</date><risdate>2022</risdate><volume>119</volume><issue>27</issue><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The Sample Analysis at Mars instrument stepped combustion experiment on a Yellowknife Bay mudstone at Gale crater, Mars revealed the presence of organic carbon of Martian and meteoritic origins. The combustion experiment was designed to access refractory organic carbon in Mars surface sediments by heating samples in the presence of oxygen to combust carbon to CO₂. Four steps were performed, two at low temperatures (less than ∼550 °C) and two at high temperatures (up to ∼870 °C). More than 950 μg C/g was released at low temperatures (with an isotopic composition of δ13C = +1.5 ± 3.8) representing a minimum of 431 μg C/g indigenous organic and inorganic Martian carbon components. Above 550 °C, 273 ± 30 μg C/g was evolved as CO₂ and CO (with estimated δ13C = −32.9 to −10.1 for organic carbon). The source of high temperature organic carbon cannot be definitively confirmed by isotopic composition, which is consistent with macromolecular organic carbon of igneous origin, meteoritic infall, or diagenetically altered biomass, or a combination of these. If from allochthonous deposition, organic carbon could have supported both prebiotic organic chemistry and heterotrophic metabolism at Gale crater, Mars, at ∼3.5 Ga.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>35759667</pmid><doi>10.1073/pnas.2201139119</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-0162-8807</orcidid><orcidid>https://orcid.org/0000-0003-3089-1986</orcidid><orcidid>https://orcid.org/0000-0002-4926-4985</orcidid><orcidid>https://orcid.org/0000-0003-1896-1726</orcidid><orcidid>https://orcid.org/0000-0001-6869-5118</orcidid><orcidid>https://orcid.org/0000-0001-9716-5597</orcidid><orcidid>https://orcid.org/0000-0002-6078-7621</orcidid><orcidid>https://orcid.org/0000-0002-6528-330X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-07, Vol.119 (27), p.1-8
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9271195
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Carbon
Carbon dioxide
Combustion
Composition
High temperature
Isotopes
Low temperature
Macromolecules
Mars craters
Mars surface
Mudstone
Organic carbon
Organic chemistry
Physical Sciences
Sciences of the Universe
Sediments
title Organic carbon concentrations in 3.5-billion-year-old lacustrine mudstones of Mars
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A32%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Organic%20carbon%20concentrations%20in%203.5-billion-year-old%20lacustrine%20mudstones%20of%20Mars&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Stern,%20Jennifer%20C.&rft.date=2022-07-05&rft.volume=119&rft.issue=27&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2201139119&rft_dat=%3Cjstor_pubme%3E27153029%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685585370&rft_id=info:pmid/35759667&rft_jstor_id=27153029&rfr_iscdi=true