Topoisomerase VI participates in an insulator-like function that prevents H3K9me2 spreading

The organization of the genome into transcriptionally active and inactive chromatin domains requires well-delineated chromatin boundaries and insulator functions in order to maintain the identity of adjacent genomic loci with antagonistic chromatin marks and functionality. In plants that lack known...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2022-07, Vol.119 (27), p.1-12
Hauptverfasser: Méteignier, Louis-Valentin, Lecampion, Cécile, Velay, Florent, Vriet, Cécile, Dimnet, Laura, Rougée, Martin, Breuer, Christian, Soubigou-Taconnat, Ludivine, Sugimoto, Keiko, Barneche, Fredy, Laloi, Christophe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12
container_issue 27
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Méteignier, Louis-Valentin
Lecampion, Cécile
Velay, Florent
Vriet, Cécile
Dimnet, Laura
Rougée, Martin
Breuer, Christian
Soubigou-Taconnat, Ludivine
Sugimoto, Keiko
Barneche, Fredy
Laloi, Christophe
description The organization of the genome into transcriptionally active and inactive chromatin domains requires well-delineated chromatin boundaries and insulator functions in order to maintain the identity of adjacent genomic loci with antagonistic chromatin marks and functionality. In plants that lack known chromatin insulators, the mechanisms that prevent heterochromatin spreading into euchromatin remain to be identified. Here, we show that DNA Topoisomerase VI participates in a chromatin boundary function that safeguards the expression of genes in euchromatin islands within silenced heterochromatin regions. While some transposable elements are reactivated in mutants of the Topoisomerase VI complex, genes insulated in euchromatin islands within heterochromatic regions of the Arabidopsis thaliana genome are specifically down-regulated. H3K9me2 levels consistently increase at euchromatin island loci and decrease at some transposable element loci. We further show that Topoisomerase VI physically interacts with S-adenosylmethionine synthase methionine adenosyl transferase 3 (MAT3), which is required for H3K9me2. A Topoisomerase VI defect affects MAT3 occupancy on heterochromatic elements and its exclusion from euchromatic islands, thereby providing a possible mechanistic explanation to the essential role of Topoisomerase VI in the delimitation of chromatin domains.
doi_str_mv 10.1073/pnas.2001290119
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9271158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>27153060</jstor_id><sourcerecordid>27153060</sourcerecordid><originalsourceid>FETCH-LOGICAL-c477t-83b0984611610130105f0d771ba4cf8e9a7771401346b140b2e6d7f1b185e9673</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0EoqFw5gRaiQsctp2x118XpKoCUhGJS-HCwfJuvI3Dxl7s3Uj8exylBOjFI88883rGLyEvES4QJLscg80XFACpBkT9iCwQNNai0fCYLACorFVDmzPyLOctAGiu4Ck5Y1xyLThfkO-3cYw-x51LNrvq20012jT5zo92crnyobKhnHke7BRTPfgfrurn0E0-hmra2Kkak9u7MOVqyT7rnaNVLhm79uHuOXnS2yG7F_fxnHz9-OH2elmvvny6ub5a1V0j5VQr1oJWjUAUCMgAgfewlhJb23S9ctrKcmlKqRFtiS11Yi17bFFxp4Vk5-T9UXec251bd2WaZAczJr-z6ZeJ1pv_K8FvzF3cG00lIldF4N1RYPOgbXm1MoccMCUoUr7Hwr69fyzFn7PLk9n53LlhsMHFORsqFCpkjLKCvnmAbuOcQvmKA8W54oLSQl0eqS7FnJPrTxMgmIPJ5mCy-Wty6Xj9774n_o-rBXh1BLa5mHaql205AwHsN36kqwM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685585622</pqid></control><display><type>article</type><title>Topoisomerase VI participates in an insulator-like function that prevents H3K9me2 spreading</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Méteignier, Louis-Valentin ; Lecampion, Cécile ; Velay, Florent ; Vriet, Cécile ; Dimnet, Laura ; Rougée, Martin ; Breuer, Christian ; Soubigou-Taconnat, Ludivine ; Sugimoto, Keiko ; Barneche, Fredy ; Laloi, Christophe</creator><creatorcontrib>Méteignier, Louis-Valentin ; Lecampion, Cécile ; Velay, Florent ; Vriet, Cécile ; Dimnet, Laura ; Rougée, Martin ; Breuer, Christian ; Soubigou-Taconnat, Ludivine ; Sugimoto, Keiko ; Barneche, Fredy ; Laloi, Christophe</creatorcontrib><description>The organization of the genome into transcriptionally active and inactive chromatin domains requires well-delineated chromatin boundaries and insulator functions in order to maintain the identity of adjacent genomic loci with antagonistic chromatin marks and functionality. In plants that lack known chromatin insulators, the mechanisms that prevent heterochromatin spreading into euchromatin remain to be identified. Here, we show that DNA Topoisomerase VI participates in a chromatin boundary function that safeguards the expression of genes in euchromatin islands within silenced heterochromatin regions. While some transposable elements are reactivated in mutants of the Topoisomerase VI complex, genes insulated in euchromatin islands within heterochromatic regions of the Arabidopsis thaliana genome are specifically down-regulated. H3K9me2 levels consistently increase at euchromatin island loci and decrease at some transposable element loci. We further show that Topoisomerase VI physically interacts with S-adenosylmethionine synthase methionine adenosyl transferase 3 (MAT3), which is required for H3K9me2. A Topoisomerase VI defect affects MAT3 occupancy on heterochromatic elements and its exclusion from euchromatic islands, thereby providing a possible mechanistic explanation to the essential role of Topoisomerase VI in the delimitation of chromatin domains.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2001290119</identifier><identifier>PMID: 35759655</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Adenosylmethionine ; Arabidopsis - genetics ; Arabidopsis - metabolism ; Arabidopsis Proteins - genetics ; Arabidopsis Proteins - metabolism ; Biological Sciences ; Chromatin ; Chromatin - genetics ; DNA topoisomerase ; DNA topoisomerase VI ; DNA Topoisomerases, Type II - genetics ; DNA Topoisomerases, Type II - metabolism ; DNA Transposable Elements ; Domains ; Euchromatin ; Euchromatin - genetics ; Gene expression ; Gene loci ; Genes ; Genetics ; Genomes ; Heterochromatin ; Heterochromatin - genetics ; Histones - genetics ; Histones - metabolism ; Insulators ; Islands ; Life Sciences ; Methionine ; Plants genetics ; S-Adenosylmethionine ; Transposons</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-07, Vol.119 (27), p.1-12</ispartof><rights>Copyright © 2022 the Author(s)</rights><rights>Copyright National Academy of Sciences Jul 5, 2022</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c477t-83b0984611610130105f0d771ba4cf8e9a7771401346b140b2e6d7f1b185e9673</citedby><cites>FETCH-LOGICAL-c477t-83b0984611610130105f0d771ba4cf8e9a7771401346b140b2e6d7f1b185e9673</cites><orcidid>0000-0002-9350-0199 ; 0000-0001-6625-268X ; 0000-0002-6576-5966 ; 0000-0001-6536-8170 ; 0000-0002-7014-7097 ; 0000-0002-7862-517X ; 0000-0002-9209-8230 ; 0000-0001-9639-5737</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271158/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9271158/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35759655$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://cnrs.hal.science/hal-03862125$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Méteignier, Louis-Valentin</creatorcontrib><creatorcontrib>Lecampion, Cécile</creatorcontrib><creatorcontrib>Velay, Florent</creatorcontrib><creatorcontrib>Vriet, Cécile</creatorcontrib><creatorcontrib>Dimnet, Laura</creatorcontrib><creatorcontrib>Rougée, Martin</creatorcontrib><creatorcontrib>Breuer, Christian</creatorcontrib><creatorcontrib>Soubigou-Taconnat, Ludivine</creatorcontrib><creatorcontrib>Sugimoto, Keiko</creatorcontrib><creatorcontrib>Barneche, Fredy</creatorcontrib><creatorcontrib>Laloi, Christophe</creatorcontrib><title>Topoisomerase VI participates in an insulator-like function that prevents H3K9me2 spreading</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>The organization of the genome into transcriptionally active and inactive chromatin domains requires well-delineated chromatin boundaries and insulator functions in order to maintain the identity of adjacent genomic loci with antagonistic chromatin marks and functionality. In plants that lack known chromatin insulators, the mechanisms that prevent heterochromatin spreading into euchromatin remain to be identified. Here, we show that DNA Topoisomerase VI participates in a chromatin boundary function that safeguards the expression of genes in euchromatin islands within silenced heterochromatin regions. While some transposable elements are reactivated in mutants of the Topoisomerase VI complex, genes insulated in euchromatin islands within heterochromatic regions of the Arabidopsis thaliana genome are specifically down-regulated. H3K9me2 levels consistently increase at euchromatin island loci and decrease at some transposable element loci. We further show that Topoisomerase VI physically interacts with S-adenosylmethionine synthase methionine adenosyl transferase 3 (MAT3), which is required for H3K9me2. A Topoisomerase VI defect affects MAT3 occupancy on heterochromatic elements and its exclusion from euchromatic islands, thereby providing a possible mechanistic explanation to the essential role of Topoisomerase VI in the delimitation of chromatin domains.</description><subject>Adenosylmethionine</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis - metabolism</subject><subject>Arabidopsis Proteins - genetics</subject><subject>Arabidopsis Proteins - metabolism</subject><subject>Biological Sciences</subject><subject>Chromatin</subject><subject>Chromatin - genetics</subject><subject>DNA topoisomerase</subject><subject>DNA topoisomerase VI</subject><subject>DNA Topoisomerases, Type II - genetics</subject><subject>DNA Topoisomerases, Type II - metabolism</subject><subject>DNA Transposable Elements</subject><subject>Domains</subject><subject>Euchromatin</subject><subject>Euchromatin - genetics</subject><subject>Gene expression</subject><subject>Gene loci</subject><subject>Genes</subject><subject>Genetics</subject><subject>Genomes</subject><subject>Heterochromatin</subject><subject>Heterochromatin - genetics</subject><subject>Histones - genetics</subject><subject>Histones - metabolism</subject><subject>Insulators</subject><subject>Islands</subject><subject>Life Sciences</subject><subject>Methionine</subject><subject>Plants genetics</subject><subject>S-Adenosylmethionine</subject><subject>Transposons</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1vEzEQhi0EoqFw5gRaiQsctp2x118XpKoCUhGJS-HCwfJuvI3Dxl7s3Uj8exylBOjFI88883rGLyEvES4QJLscg80XFACpBkT9iCwQNNai0fCYLACorFVDmzPyLOctAGiu4Ck5Y1xyLThfkO-3cYw-x51LNrvq20012jT5zo92crnyobKhnHke7BRTPfgfrurn0E0-hmra2Kkak9u7MOVqyT7rnaNVLhm79uHuOXnS2yG7F_fxnHz9-OH2elmvvny6ub5a1V0j5VQr1oJWjUAUCMgAgfewlhJb23S9ctrKcmlKqRFtiS11Yi17bFFxp4Vk5-T9UXec251bd2WaZAczJr-z6ZeJ1pv_K8FvzF3cG00lIldF4N1RYPOgbXm1MoccMCUoUr7Hwr69fyzFn7PLk9n53LlhsMHFORsqFCpkjLKCvnmAbuOcQvmKA8W54oLSQl0eqS7FnJPrTxMgmIPJ5mCy-Wty6Xj9774n_o-rBXh1BLa5mHaql205AwHsN36kqwM</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Méteignier, Louis-Valentin</creator><creator>Lecampion, Cécile</creator><creator>Velay, Florent</creator><creator>Vriet, Cécile</creator><creator>Dimnet, Laura</creator><creator>Rougée, Martin</creator><creator>Breuer, Christian</creator><creator>Soubigou-Taconnat, Ludivine</creator><creator>Sugimoto, Keiko</creator><creator>Barneche, Fredy</creator><creator>Laloi, Christophe</creator><general>National Academy of Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-9350-0199</orcidid><orcidid>https://orcid.org/0000-0001-6625-268X</orcidid><orcidid>https://orcid.org/0000-0002-6576-5966</orcidid><orcidid>https://orcid.org/0000-0001-6536-8170</orcidid><orcidid>https://orcid.org/0000-0002-7014-7097</orcidid><orcidid>https://orcid.org/0000-0002-7862-517X</orcidid><orcidid>https://orcid.org/0000-0002-9209-8230</orcidid><orcidid>https://orcid.org/0000-0001-9639-5737</orcidid></search><sort><creationdate>20220705</creationdate><title>Topoisomerase VI participates in an insulator-like function that prevents H3K9me2 spreading</title><author>Méteignier, Louis-Valentin ; Lecampion, Cécile ; Velay, Florent ; Vriet, Cécile ; Dimnet, Laura ; Rougée, Martin ; Breuer, Christian ; Soubigou-Taconnat, Ludivine ; Sugimoto, Keiko ; Barneche, Fredy ; Laloi, Christophe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c477t-83b0984611610130105f0d771ba4cf8e9a7771401346b140b2e6d7f1b185e9673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenosylmethionine</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis - metabolism</topic><topic>Arabidopsis Proteins - genetics</topic><topic>Arabidopsis Proteins - metabolism</topic><topic>Biological Sciences</topic><topic>Chromatin</topic><topic>Chromatin - genetics</topic><topic>DNA topoisomerase</topic><topic>DNA topoisomerase VI</topic><topic>DNA Topoisomerases, Type II - genetics</topic><topic>DNA Topoisomerases, Type II - metabolism</topic><topic>DNA Transposable Elements</topic><topic>Domains</topic><topic>Euchromatin</topic><topic>Euchromatin - genetics</topic><topic>Gene expression</topic><topic>Gene loci</topic><topic>Genes</topic><topic>Genetics</topic><topic>Genomes</topic><topic>Heterochromatin</topic><topic>Heterochromatin - genetics</topic><topic>Histones - genetics</topic><topic>Histones - metabolism</topic><topic>Insulators</topic><topic>Islands</topic><topic>Life Sciences</topic><topic>Methionine</topic><topic>Plants genetics</topic><topic>S-Adenosylmethionine</topic><topic>Transposons</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Méteignier, Louis-Valentin</creatorcontrib><creatorcontrib>Lecampion, Cécile</creatorcontrib><creatorcontrib>Velay, Florent</creatorcontrib><creatorcontrib>Vriet, Cécile</creatorcontrib><creatorcontrib>Dimnet, Laura</creatorcontrib><creatorcontrib>Rougée, Martin</creatorcontrib><creatorcontrib>Breuer, Christian</creatorcontrib><creatorcontrib>Soubigou-Taconnat, Ludivine</creatorcontrib><creatorcontrib>Sugimoto, Keiko</creatorcontrib><creatorcontrib>Barneche, Fredy</creatorcontrib><creatorcontrib>Laloi, Christophe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Méteignier, Louis-Valentin</au><au>Lecampion, Cécile</au><au>Velay, Florent</au><au>Vriet, Cécile</au><au>Dimnet, Laura</au><au>Rougée, Martin</au><au>Breuer, Christian</au><au>Soubigou-Taconnat, Ludivine</au><au>Sugimoto, Keiko</au><au>Barneche, Fredy</au><au>Laloi, Christophe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topoisomerase VI participates in an insulator-like function that prevents H3K9me2 spreading</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2022-07-05</date><risdate>2022</risdate><volume>119</volume><issue>27</issue><spage>1</spage><epage>12</epage><pages>1-12</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>The organization of the genome into transcriptionally active and inactive chromatin domains requires well-delineated chromatin boundaries and insulator functions in order to maintain the identity of adjacent genomic loci with antagonistic chromatin marks and functionality. In plants that lack known chromatin insulators, the mechanisms that prevent heterochromatin spreading into euchromatin remain to be identified. Here, we show that DNA Topoisomerase VI participates in a chromatin boundary function that safeguards the expression of genes in euchromatin islands within silenced heterochromatin regions. While some transposable elements are reactivated in mutants of the Topoisomerase VI complex, genes insulated in euchromatin islands within heterochromatic regions of the Arabidopsis thaliana genome are specifically down-regulated. H3K9me2 levels consistently increase at euchromatin island loci and decrease at some transposable element loci. We further show that Topoisomerase VI physically interacts with S-adenosylmethionine synthase methionine adenosyl transferase 3 (MAT3), which is required for H3K9me2. A Topoisomerase VI defect affects MAT3 occupancy on heterochromatic elements and its exclusion from euchromatic islands, thereby providing a possible mechanistic explanation to the essential role of Topoisomerase VI in the delimitation of chromatin domains.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>35759655</pmid><doi>10.1073/pnas.2001290119</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9350-0199</orcidid><orcidid>https://orcid.org/0000-0001-6625-268X</orcidid><orcidid>https://orcid.org/0000-0002-6576-5966</orcidid><orcidid>https://orcid.org/0000-0001-6536-8170</orcidid><orcidid>https://orcid.org/0000-0002-7014-7097</orcidid><orcidid>https://orcid.org/0000-0002-7862-517X</orcidid><orcidid>https://orcid.org/0000-0002-9209-8230</orcidid><orcidid>https://orcid.org/0000-0001-9639-5737</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-07, Vol.119 (27), p.1-12
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9271158
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Adenosylmethionine
Arabidopsis - genetics
Arabidopsis - metabolism
Arabidopsis Proteins - genetics
Arabidopsis Proteins - metabolism
Biological Sciences
Chromatin
Chromatin - genetics
DNA topoisomerase
DNA topoisomerase VI
DNA Topoisomerases, Type II - genetics
DNA Topoisomerases, Type II - metabolism
DNA Transposable Elements
Domains
Euchromatin
Euchromatin - genetics
Gene expression
Gene loci
Genes
Genetics
Genomes
Heterochromatin
Heterochromatin - genetics
Histones - genetics
Histones - metabolism
Insulators
Islands
Life Sciences
Methionine
Plants genetics
S-Adenosylmethionine
Transposons
title Topoisomerase VI participates in an insulator-like function that prevents H3K9me2 spreading
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T20%3A14%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topoisomerase%20VI%20participates%20in%20an%20insulator-like%20function%20that%20prevents%20H3K9me2%20spreading&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=M%C3%A9teignier,%20Louis-Valentin&rft.date=2022-07-05&rft.volume=119&rft.issue=27&rft.spage=1&rft.epage=12&rft.pages=1-12&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2001290119&rft_dat=%3Cjstor_pubme%3E27153060%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685585622&rft_id=info:pmid/35759655&rft_jstor_id=27153060&rfr_iscdi=true