Development and Validation of Empirical Models to Predict Metal Additively Manufactured Part Density and Surface Roughness from Powder Characteristics

Metal additive manufacturing (AM) processes, viz laser powder bed fusion (L-PBF), are becoming an increasingly popular manufacturing tool for a range of industries. The powder material used in L-PBF is costly, and it is rare for a single batch of powder to be used in a single L-PBF build. The un-mel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-07, Vol.15 (13), p.4707
Hauptverfasser: Quinn, Paul, Uí Mhurchadha, Sinéad M., Lawlor, Jim, Raghavendra, Ramesh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 4707
container_title Materials
container_volume 15
creator Quinn, Paul
Uí Mhurchadha, Sinéad M.
Lawlor, Jim
Raghavendra, Ramesh
description Metal additive manufacturing (AM) processes, viz laser powder bed fusion (L-PBF), are becoming an increasingly popular manufacturing tool for a range of industries. The powder material used in L-PBF is costly, and it is rare for a single batch of powder to be used in a single L-PBF build. The un-melted powder material can be sieved and recycled for further builds, significantly increasing its utilisation. Previous studies conducted by the authors have tracked the effect of both powder recycling and powder rejuvenation processes on the powder characteristics and L-PBF part properties. This paper investigates the use of multiple linear regression to build empirical models to predict the part density and surface roughness of 316L stainless steel parts manufactured using recycled and rejuvenated powder based on the powder characteristics. The developed models built on the understanding of the effect of powder characteristics on the part properties. The developed models were found to be capable of predicting the part density and surface roughness to within ±0.02% and ±0.5 Ra, respectively. The models developed enable L-PBF operators to input powder characteristics and predict the expected part density and surface roughness.
doi_str_mv 10.3390/ma15134707
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9267662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2687727850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-172541f4df828c193510cbbda1240c8c65e0907b02a5dc4b8f6c3ff962465c203</originalsourceid><addsrcrecordid>eNpdkVtrHCEYhqU0NCHNTX-B0JtS2NTD6OhNIWzSpJAlS0-34njIGmZ0q07K_pH83rpN6Mkbxe_x-dQXgFcYnVIq0btJY4Zp16P-GTjCUvIFll33_K_1ITgp5Q61QSkWRL4Ah5QJxAXFR-Dh3N27MW0nFyvU0cJvegxW15AiTB5eTNuQg9EjXCXrxgJrguvsbDAVrlxt-2fWhhqaYwdXOs5emzo3AK51rvDcxRLq7pf485xb0cFPab7dRFcK9DlNcJ1-WJfhcqNzO-pyKDWY8hIceD0Wd_I0H4OvHy6-LK8W1zeXH5dn1wtDMa0L3BPWYd9ZL4gwWFKGkRkGqzHpkBGGM4ck6gdENLOmG4TnhnovOek4MwTRY_D-0budh8lZ034h61Ftc5h03qmkg_q3EsNG3aZ7JQnvOSdN8OZJkNP32ZWqplCMG0cdXZqLIlz0PekF2_d6_R96l-Yc2_P2FEeihcIa9faRMjmVkp3_fRmM1D5x9Sdx-hNELJ7f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686085805</pqid></control><display><type>article</type><title>Development and Validation of Empirical Models to Predict Metal Additively Manufactured Part Density and Surface Roughness from Powder Characteristics</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Quinn, Paul ; Uí Mhurchadha, Sinéad M. ; Lawlor, Jim ; Raghavendra, Ramesh</creator><creatorcontrib>Quinn, Paul ; Uí Mhurchadha, Sinéad M. ; Lawlor, Jim ; Raghavendra, Ramesh</creatorcontrib><description>Metal additive manufacturing (AM) processes, viz laser powder bed fusion (L-PBF), are becoming an increasingly popular manufacturing tool for a range of industries. The powder material used in L-PBF is costly, and it is rare for a single batch of powder to be used in a single L-PBF build. The un-melted powder material can be sieved and recycled for further builds, significantly increasing its utilisation. Previous studies conducted by the authors have tracked the effect of both powder recycling and powder rejuvenation processes on the powder characteristics and L-PBF part properties. This paper investigates the use of multiple linear regression to build empirical models to predict the part density and surface roughness of 316L stainless steel parts manufactured using recycled and rejuvenated powder based on the powder characteristics. The developed models built on the understanding of the effect of powder characteristics on the part properties. The developed models were found to be capable of predicting the part density and surface roughness to within ±0.02% and ±0.5 Ra, respectively. The models developed enable L-PBF operators to input powder characteristics and predict the expected part density and surface roughness.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15134707</identifier><identifier>PMID: 35806831</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Additive manufacturing ; Density ; Lasers ; Manufacturing ; Melting ; Morphology ; Particle size ; Powder beds ; Rapid prototyping ; Recycling ; Stainless steel ; Stainless steels ; Surface roughness</subject><ispartof>Materials, 2022-07, Vol.15 (13), p.4707</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-172541f4df828c193510cbbda1240c8c65e0907b02a5dc4b8f6c3ff962465c203</citedby><cites>FETCH-LOGICAL-c313t-172541f4df828c193510cbbda1240c8c65e0907b02a5dc4b8f6c3ff962465c203</cites><orcidid>0000-0002-3484-9083 ; 0000-0001-8719-7579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267662/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267662/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids></links><search><creatorcontrib>Quinn, Paul</creatorcontrib><creatorcontrib>Uí Mhurchadha, Sinéad M.</creatorcontrib><creatorcontrib>Lawlor, Jim</creatorcontrib><creatorcontrib>Raghavendra, Ramesh</creatorcontrib><title>Development and Validation of Empirical Models to Predict Metal Additively Manufactured Part Density and Surface Roughness from Powder Characteristics</title><title>Materials</title><description>Metal additive manufacturing (AM) processes, viz laser powder bed fusion (L-PBF), are becoming an increasingly popular manufacturing tool for a range of industries. The powder material used in L-PBF is costly, and it is rare for a single batch of powder to be used in a single L-PBF build. The un-melted powder material can be sieved and recycled for further builds, significantly increasing its utilisation. Previous studies conducted by the authors have tracked the effect of both powder recycling and powder rejuvenation processes on the powder characteristics and L-PBF part properties. This paper investigates the use of multiple linear regression to build empirical models to predict the part density and surface roughness of 316L stainless steel parts manufactured using recycled and rejuvenated powder based on the powder characteristics. The developed models built on the understanding of the effect of powder characteristics on the part properties. The developed models were found to be capable of predicting the part density and surface roughness to within ±0.02% and ±0.5 Ra, respectively. The models developed enable L-PBF operators to input powder characteristics and predict the expected part density and surface roughness.</description><subject>Additive manufacturing</subject><subject>Density</subject><subject>Lasers</subject><subject>Manufacturing</subject><subject>Melting</subject><subject>Morphology</subject><subject>Particle size</subject><subject>Powder beds</subject><subject>Rapid prototyping</subject><subject>Recycling</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Surface roughness</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVtrHCEYhqU0NCHNTX-B0JtS2NTD6OhNIWzSpJAlS0-34njIGmZ0q07K_pH83rpN6Mkbxe_x-dQXgFcYnVIq0btJY4Zp16P-GTjCUvIFll33_K_1ITgp5Q61QSkWRL4Ah5QJxAXFR-Dh3N27MW0nFyvU0cJvegxW15AiTB5eTNuQg9EjXCXrxgJrguvsbDAVrlxt-2fWhhqaYwdXOs5emzo3AK51rvDcxRLq7pf485xb0cFPab7dRFcK9DlNcJ1-WJfhcqNzO-pyKDWY8hIceD0Wd_I0H4OvHy6-LK8W1zeXH5dn1wtDMa0L3BPWYd9ZL4gwWFKGkRkGqzHpkBGGM4ck6gdENLOmG4TnhnovOek4MwTRY_D-0budh8lZ034h61Ftc5h03qmkg_q3EsNG3aZ7JQnvOSdN8OZJkNP32ZWqplCMG0cdXZqLIlz0PekF2_d6_R96l-Yc2_P2FEeihcIa9faRMjmVkp3_fRmM1D5x9Sdx-hNELJ7f</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Quinn, Paul</creator><creator>Uí Mhurchadha, Sinéad M.</creator><creator>Lawlor, Jim</creator><creator>Raghavendra, Ramesh</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3484-9083</orcidid><orcidid>https://orcid.org/0000-0001-8719-7579</orcidid></search><sort><creationdate>20220705</creationdate><title>Development and Validation of Empirical Models to Predict Metal Additively Manufactured Part Density and Surface Roughness from Powder Characteristics</title><author>Quinn, Paul ; Uí Mhurchadha, Sinéad M. ; Lawlor, Jim ; Raghavendra, Ramesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-172541f4df828c193510cbbda1240c8c65e0907b02a5dc4b8f6c3ff962465c203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additive manufacturing</topic><topic>Density</topic><topic>Lasers</topic><topic>Manufacturing</topic><topic>Melting</topic><topic>Morphology</topic><topic>Particle size</topic><topic>Powder beds</topic><topic>Rapid prototyping</topic><topic>Recycling</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quinn, Paul</creatorcontrib><creatorcontrib>Uí Mhurchadha, Sinéad M.</creatorcontrib><creatorcontrib>Lawlor, Jim</creatorcontrib><creatorcontrib>Raghavendra, Ramesh</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quinn, Paul</au><au>Uí Mhurchadha, Sinéad M.</au><au>Lawlor, Jim</au><au>Raghavendra, Ramesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Validation of Empirical Models to Predict Metal Additively Manufactured Part Density and Surface Roughness from Powder Characteristics</atitle><jtitle>Materials</jtitle><date>2022-07-05</date><risdate>2022</risdate><volume>15</volume><issue>13</issue><spage>4707</spage><pages>4707-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Metal additive manufacturing (AM) processes, viz laser powder bed fusion (L-PBF), are becoming an increasingly popular manufacturing tool for a range of industries. The powder material used in L-PBF is costly, and it is rare for a single batch of powder to be used in a single L-PBF build. The un-melted powder material can be sieved and recycled for further builds, significantly increasing its utilisation. Previous studies conducted by the authors have tracked the effect of both powder recycling and powder rejuvenation processes on the powder characteristics and L-PBF part properties. This paper investigates the use of multiple linear regression to build empirical models to predict the part density and surface roughness of 316L stainless steel parts manufactured using recycled and rejuvenated powder based on the powder characteristics. The developed models built on the understanding of the effect of powder characteristics on the part properties. The developed models were found to be capable of predicting the part density and surface roughness to within ±0.02% and ±0.5 Ra, respectively. The models developed enable L-PBF operators to input powder characteristics and predict the expected part density and surface roughness.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35806831</pmid><doi>10.3390/ma15134707</doi><orcidid>https://orcid.org/0000-0002-3484-9083</orcidid><orcidid>https://orcid.org/0000-0001-8719-7579</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-07, Vol.15 (13), p.4707
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9267662
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Additive manufacturing
Density
Lasers
Manufacturing
Melting
Morphology
Particle size
Powder beds
Rapid prototyping
Recycling
Stainless steel
Stainless steels
Surface roughness
title Development and Validation of Empirical Models to Predict Metal Additively Manufactured Part Density and Surface Roughness from Powder Characteristics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Validation%20of%20Empirical%20Models%20to%20Predict%20Metal%20Additively%20Manufactured%20Part%20Density%20and%20Surface%20Roughness%20from%20Powder%20Characteristics&rft.jtitle=Materials&rft.au=Quinn,%20Paul&rft.date=2022-07-05&rft.volume=15&rft.issue=13&rft.spage=4707&rft.pages=4707-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15134707&rft_dat=%3Cproquest_pubme%3E2687727850%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686085805&rft_id=info:pmid/35806831&rfr_iscdi=true