Development and Validation of Empirical Models to Predict Metal Additively Manufactured Part Density and Surface Roughness from Powder Characteristics
Metal additive manufacturing (AM) processes, viz laser powder bed fusion (L-PBF), are becoming an increasingly popular manufacturing tool for a range of industries. The powder material used in L-PBF is costly, and it is rare for a single batch of powder to be used in a single L-PBF build. The un-mel...
Gespeichert in:
Veröffentlicht in: | Materials 2022-07, Vol.15 (13), p.4707 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 4707 |
container_title | Materials |
container_volume | 15 |
creator | Quinn, Paul Uí Mhurchadha, Sinéad M. Lawlor, Jim Raghavendra, Ramesh |
description | Metal additive manufacturing (AM) processes, viz laser powder bed fusion (L-PBF), are becoming an increasingly popular manufacturing tool for a range of industries. The powder material used in L-PBF is costly, and it is rare for a single batch of powder to be used in a single L-PBF build. The un-melted powder material can be sieved and recycled for further builds, significantly increasing its utilisation. Previous studies conducted by the authors have tracked the effect of both powder recycling and powder rejuvenation processes on the powder characteristics and L-PBF part properties. This paper investigates the use of multiple linear regression to build empirical models to predict the part density and surface roughness of 316L stainless steel parts manufactured using recycled and rejuvenated powder based on the powder characteristics. The developed models built on the understanding of the effect of powder characteristics on the part properties. The developed models were found to be capable of predicting the part density and surface roughness to within ±0.02% and ±0.5 Ra, respectively. The models developed enable L-PBF operators to input powder characteristics and predict the expected part density and surface roughness. |
doi_str_mv | 10.3390/ma15134707 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9267662</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2687727850</sourcerecordid><originalsourceid>FETCH-LOGICAL-c313t-172541f4df828c193510cbbda1240c8c65e0907b02a5dc4b8f6c3ff962465c203</originalsourceid><addsrcrecordid>eNpdkVtrHCEYhqU0NCHNTX-B0JtS2NTD6OhNIWzSpJAlS0-34njIGmZ0q07K_pH83rpN6Mkbxe_x-dQXgFcYnVIq0btJY4Zp16P-GTjCUvIFll33_K_1ITgp5Q61QSkWRL4Ah5QJxAXFR-Dh3N27MW0nFyvU0cJvegxW15AiTB5eTNuQg9EjXCXrxgJrguvsbDAVrlxt-2fWhhqaYwdXOs5emzo3AK51rvDcxRLq7pf485xb0cFPab7dRFcK9DlNcJ1-WJfhcqNzO-pyKDWY8hIceD0Wd_I0H4OvHy6-LK8W1zeXH5dn1wtDMa0L3BPWYd9ZL4gwWFKGkRkGqzHpkBGGM4ck6gdENLOmG4TnhnovOek4MwTRY_D-0budh8lZ034h61Ftc5h03qmkg_q3EsNG3aZ7JQnvOSdN8OZJkNP32ZWqplCMG0cdXZqLIlz0PekF2_d6_R96l-Yc2_P2FEeihcIa9faRMjmVkp3_fRmM1D5x9Sdx-hNELJ7f</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686085805</pqid></control><display><type>article</type><title>Development and Validation of Empirical Models to Predict Metal Additively Manufactured Part Density and Surface Roughness from Powder Characteristics</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Quinn, Paul ; Uí Mhurchadha, Sinéad M. ; Lawlor, Jim ; Raghavendra, Ramesh</creator><creatorcontrib>Quinn, Paul ; Uí Mhurchadha, Sinéad M. ; Lawlor, Jim ; Raghavendra, Ramesh</creatorcontrib><description>Metal additive manufacturing (AM) processes, viz laser powder bed fusion (L-PBF), are becoming an increasingly popular manufacturing tool for a range of industries. The powder material used in L-PBF is costly, and it is rare for a single batch of powder to be used in a single L-PBF build. The un-melted powder material can be sieved and recycled for further builds, significantly increasing its utilisation. Previous studies conducted by the authors have tracked the effect of both powder recycling and powder rejuvenation processes on the powder characteristics and L-PBF part properties. This paper investigates the use of multiple linear regression to build empirical models to predict the part density and surface roughness of 316L stainless steel parts manufactured using recycled and rejuvenated powder based on the powder characteristics. The developed models built on the understanding of the effect of powder characteristics on the part properties. The developed models were found to be capable of predicting the part density and surface roughness to within ±0.02% and ±0.5 Ra, respectively. The models developed enable L-PBF operators to input powder characteristics and predict the expected part density and surface roughness.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15134707</identifier><identifier>PMID: 35806831</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Additive manufacturing ; Density ; Lasers ; Manufacturing ; Melting ; Morphology ; Particle size ; Powder beds ; Rapid prototyping ; Recycling ; Stainless steel ; Stainless steels ; Surface roughness</subject><ispartof>Materials, 2022-07, Vol.15 (13), p.4707</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c313t-172541f4df828c193510cbbda1240c8c65e0907b02a5dc4b8f6c3ff962465c203</citedby><cites>FETCH-LOGICAL-c313t-172541f4df828c193510cbbda1240c8c65e0907b02a5dc4b8f6c3ff962465c203</cites><orcidid>0000-0002-3484-9083 ; 0000-0001-8719-7579</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267662/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267662/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,27905,27906,53772,53774</link.rule.ids></links><search><creatorcontrib>Quinn, Paul</creatorcontrib><creatorcontrib>Uí Mhurchadha, Sinéad M.</creatorcontrib><creatorcontrib>Lawlor, Jim</creatorcontrib><creatorcontrib>Raghavendra, Ramesh</creatorcontrib><title>Development and Validation of Empirical Models to Predict Metal Additively Manufactured Part Density and Surface Roughness from Powder Characteristics</title><title>Materials</title><description>Metal additive manufacturing (AM) processes, viz laser powder bed fusion (L-PBF), are becoming an increasingly popular manufacturing tool for a range of industries. The powder material used in L-PBF is costly, and it is rare for a single batch of powder to be used in a single L-PBF build. The un-melted powder material can be sieved and recycled for further builds, significantly increasing its utilisation. Previous studies conducted by the authors have tracked the effect of both powder recycling and powder rejuvenation processes on the powder characteristics and L-PBF part properties. This paper investigates the use of multiple linear regression to build empirical models to predict the part density and surface roughness of 316L stainless steel parts manufactured using recycled and rejuvenated powder based on the powder characteristics. The developed models built on the understanding of the effect of powder characteristics on the part properties. The developed models were found to be capable of predicting the part density and surface roughness to within ±0.02% and ±0.5 Ra, respectively. The models developed enable L-PBF operators to input powder characteristics and predict the expected part density and surface roughness.</description><subject>Additive manufacturing</subject><subject>Density</subject><subject>Lasers</subject><subject>Manufacturing</subject><subject>Melting</subject><subject>Morphology</subject><subject>Particle size</subject><subject>Powder beds</subject><subject>Rapid prototyping</subject><subject>Recycling</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Surface roughness</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkVtrHCEYhqU0NCHNTX-B0JtS2NTD6OhNIWzSpJAlS0-34njIGmZ0q07K_pH83rpN6Mkbxe_x-dQXgFcYnVIq0btJY4Zp16P-GTjCUvIFll33_K_1ITgp5Q61QSkWRL4Ah5QJxAXFR-Dh3N27MW0nFyvU0cJvegxW15AiTB5eTNuQg9EjXCXrxgJrguvsbDAVrlxt-2fWhhqaYwdXOs5emzo3AK51rvDcxRLq7pf485xb0cFPab7dRFcK9DlNcJ1-WJfhcqNzO-pyKDWY8hIceD0Wd_I0H4OvHy6-LK8W1zeXH5dn1wtDMa0L3BPWYd9ZL4gwWFKGkRkGqzHpkBGGM4ck6gdENLOmG4TnhnovOek4MwTRY_D-0budh8lZ034h61Ftc5h03qmkg_q3EsNG3aZ7JQnvOSdN8OZJkNP32ZWqplCMG0cdXZqLIlz0PekF2_d6_R96l-Yc2_P2FEeihcIa9faRMjmVkp3_fRmM1D5x9Sdx-hNELJ7f</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Quinn, Paul</creator><creator>Uí Mhurchadha, Sinéad M.</creator><creator>Lawlor, Jim</creator><creator>Raghavendra, Ramesh</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3484-9083</orcidid><orcidid>https://orcid.org/0000-0001-8719-7579</orcidid></search><sort><creationdate>20220705</creationdate><title>Development and Validation of Empirical Models to Predict Metal Additively Manufactured Part Density and Surface Roughness from Powder Characteristics</title><author>Quinn, Paul ; Uí Mhurchadha, Sinéad M. ; Lawlor, Jim ; Raghavendra, Ramesh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c313t-172541f4df828c193510cbbda1240c8c65e0907b02a5dc4b8f6c3ff962465c203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Additive manufacturing</topic><topic>Density</topic><topic>Lasers</topic><topic>Manufacturing</topic><topic>Melting</topic><topic>Morphology</topic><topic>Particle size</topic><topic>Powder beds</topic><topic>Rapid prototyping</topic><topic>Recycling</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Surface roughness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Quinn, Paul</creatorcontrib><creatorcontrib>Uí Mhurchadha, Sinéad M.</creatorcontrib><creatorcontrib>Lawlor, Jim</creatorcontrib><creatorcontrib>Raghavendra, Ramesh</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Quinn, Paul</au><au>Uí Mhurchadha, Sinéad M.</au><au>Lawlor, Jim</au><au>Raghavendra, Ramesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development and Validation of Empirical Models to Predict Metal Additively Manufactured Part Density and Surface Roughness from Powder Characteristics</atitle><jtitle>Materials</jtitle><date>2022-07-05</date><risdate>2022</risdate><volume>15</volume><issue>13</issue><spage>4707</spage><pages>4707-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Metal additive manufacturing (AM) processes, viz laser powder bed fusion (L-PBF), are becoming an increasingly popular manufacturing tool for a range of industries. The powder material used in L-PBF is costly, and it is rare for a single batch of powder to be used in a single L-PBF build. The un-melted powder material can be sieved and recycled for further builds, significantly increasing its utilisation. Previous studies conducted by the authors have tracked the effect of both powder recycling and powder rejuvenation processes on the powder characteristics and L-PBF part properties. This paper investigates the use of multiple linear regression to build empirical models to predict the part density and surface roughness of 316L stainless steel parts manufactured using recycled and rejuvenated powder based on the powder characteristics. The developed models built on the understanding of the effect of powder characteristics on the part properties. The developed models were found to be capable of predicting the part density and surface roughness to within ±0.02% and ±0.5 Ra, respectively. The models developed enable L-PBF operators to input powder characteristics and predict the expected part density and surface roughness.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35806831</pmid><doi>10.3390/ma15134707</doi><orcidid>https://orcid.org/0000-0002-3484-9083</orcidid><orcidid>https://orcid.org/0000-0001-8719-7579</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-07, Vol.15 (13), p.4707 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9267662 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Additive manufacturing Density Lasers Manufacturing Melting Morphology Particle size Powder beds Rapid prototyping Recycling Stainless steel Stainless steels Surface roughness |
title | Development and Validation of Empirical Models to Predict Metal Additively Manufactured Part Density and Surface Roughness from Powder Characteristics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20and%20Validation%20of%20Empirical%20Models%20to%20Predict%20Metal%20Additively%20Manufactured%20Part%20Density%20and%20Surface%20Roughness%20from%20Powder%20Characteristics&rft.jtitle=Materials&rft.au=Quinn,%20Paul&rft.date=2022-07-05&rft.volume=15&rft.issue=13&rft.spage=4707&rft.pages=4707-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15134707&rft_dat=%3Cproquest_pubme%3E2687727850%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686085805&rft_id=info:pmid/35806831&rfr_iscdi=true |