Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics

Due to the increasing use of the different composite materials in lightweight applications, such as in aerospace, it becomes crucial to understand the different damages occurring within them during life cycle and their possible inspection with different inspection techniques in different life cycle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-07, Vol.15 (13), p.4645
Hauptverfasser: Shah, Chirag, Bosse, Stefan, von Hehl, Axel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 4645
container_title Materials
container_volume 15
creator Shah, Chirag
Bosse, Stefan
von Hehl, Axel
description Due to the increasing use of the different composite materials in lightweight applications, such as in aerospace, it becomes crucial to understand the different damages occurring within them during life cycle and their possible inspection with different inspection techniques in different life cycle stages. A comprehensive classification of these damage patterns, measuring signals, and analysis methods using a taxonomical approach can help in this direction. In conjunction with the taxonomy, this work addresses damage diagnostics in hybrid and composite materials, such as fibre metal laminates (FMLs). A novel unified taxonomy atlas of damage patterns, measuring signals, and analysis methods is introduced. Analysis methods based on advanced supervised and unsupervised machine learning algorithms, such as autoencoders, self-organising maps, and convolutional neural networks, and a novel z-profiling method, are implemented. Besides formal aspects, an extended use case demonstrating damage identification in FML plates using X-ray computer tomography (X-ray CT) data is used to elaborate different data analysis techniques to amplify or detect damages and to show challenges.
doi_str_mv 10.3390/ma15134645
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9267621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2686181429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-fec4c8705a6925a92d8c94893efe3ea2dd41b1f161745bdd42a886baf44e06be3</originalsourceid><addsrcrecordid>eNpdkV1LHTEQhkOpqKg3_oJAb0rpqZuPzSY3BTlWKygWqtdhdnd2jZxNTpOs1H_fHD9a69zM5J1nXsIMIYes-iKEqY4mYDUTUsn6HdllxqgFM1K-f1XvkIOU7qoSQjDNzTbZEbWuVKOaXZKu4XfwYXqgYaAnMMGI9AfkjNEn6jxdhmkdkstIL6GIDlbpM71ESHN0fqQ_3egfJfB9kfNt6BMdQqTHcw5TmehfTE8cjD6k7Lq0T7aGMoQHz3mP3Jx-u15-X1xcnZ0vjy8WndAiLwbsZKebqgZleA2G97ozUhuBAwoE3veStWxgijWybsuLg9aqhUFKrFSLYo98ffJdz-2EfYc-R1jZdXQTxAcbwNn_O97d2jHcW8PLcjgrBh-fDWL4NWPKdnKpw9UKPIY5Wa500_DG1Bv0wxv0Lsxxs5sNpZhmkptCfXqiuhhSijj8_Qyr7Oac9t85xR-vUpIx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686181429</pqid></control><display><type>article</type><title>Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Shah, Chirag ; Bosse, Stefan ; von Hehl, Axel</creator><creatorcontrib>Shah, Chirag ; Bosse, Stefan ; von Hehl, Axel</creatorcontrib><description>Due to the increasing use of the different composite materials in lightweight applications, such as in aerospace, it becomes crucial to understand the different damages occurring within them during life cycle and their possible inspection with different inspection techniques in different life cycle stages. A comprehensive classification of these damage patterns, measuring signals, and analysis methods using a taxonomical approach can help in this direction. In conjunction with the taxonomy, this work addresses damage diagnostics in hybrid and composite materials, such as fibre metal laminates (FMLs). A novel unified taxonomy atlas of damage patterns, measuring signals, and analysis methods is introduced. Analysis methods based on advanced supervised and unsupervised machine learning algorithms, such as autoencoders, self-organising maps, and convolutional neural networks, and a novel z-profiling method, are implemented. Besides formal aspects, an extended use case demonstrating damage identification in FML plates using X-ray computer tomography (X-ray CT) data is used to elaborate different data analysis techniques to amplify or detect damages and to show challenges.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15134645</identifier><identifier>PMID: 35806767</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial neural networks ; Automation ; Classification ; Composite materials ; Computed tomography ; Damage detection ; Damage patterns ; Data analysis ; Design ; Engineering ; Fiber-metal laminates ; Inspection ; Knowledge sharing ; Laminates ; Linnaeus, Carolus (1707-1778) ; Literature reviews ; Machine learning ; Systematic review ; Taxonomy ; Tomography</subject><ispartof>Materials, 2022-07, Vol.15 (13), p.4645</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-fec4c8705a6925a92d8c94893efe3ea2dd41b1f161745bdd42a886baf44e06be3</citedby><cites>FETCH-LOGICAL-c383t-fec4c8705a6925a92d8c94893efe3ea2dd41b1f161745bdd42a886baf44e06be3</cites><orcidid>0000-0002-3581-6582 ; 0000-0002-8774-6141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267621/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267621/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Shah, Chirag</creatorcontrib><creatorcontrib>Bosse, Stefan</creatorcontrib><creatorcontrib>von Hehl, Axel</creatorcontrib><title>Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics</title><title>Materials</title><description>Due to the increasing use of the different composite materials in lightweight applications, such as in aerospace, it becomes crucial to understand the different damages occurring within them during life cycle and their possible inspection with different inspection techniques in different life cycle stages. A comprehensive classification of these damage patterns, measuring signals, and analysis methods using a taxonomical approach can help in this direction. In conjunction with the taxonomy, this work addresses damage diagnostics in hybrid and composite materials, such as fibre metal laminates (FMLs). A novel unified taxonomy atlas of damage patterns, measuring signals, and analysis methods is introduced. Analysis methods based on advanced supervised and unsupervised machine learning algorithms, such as autoencoders, self-organising maps, and convolutional neural networks, and a novel z-profiling method, are implemented. Besides formal aspects, an extended use case demonstrating damage identification in FML plates using X-ray computer tomography (X-ray CT) data is used to elaborate different data analysis techniques to amplify or detect damages and to show challenges.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Classification</subject><subject>Composite materials</subject><subject>Computed tomography</subject><subject>Damage detection</subject><subject>Damage patterns</subject><subject>Data analysis</subject><subject>Design</subject><subject>Engineering</subject><subject>Fiber-metal laminates</subject><subject>Inspection</subject><subject>Knowledge sharing</subject><subject>Laminates</subject><subject>Linnaeus, Carolus (1707-1778)</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Systematic review</subject><subject>Taxonomy</subject><subject>Tomography</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV1LHTEQhkOpqKg3_oJAb0rpqZuPzSY3BTlWKygWqtdhdnd2jZxNTpOs1H_fHD9a69zM5J1nXsIMIYes-iKEqY4mYDUTUsn6HdllxqgFM1K-f1XvkIOU7qoSQjDNzTbZEbWuVKOaXZKu4XfwYXqgYaAnMMGI9AfkjNEn6jxdhmkdkstIL6GIDlbpM71ESHN0fqQ_3egfJfB9kfNt6BMdQqTHcw5TmehfTE8cjD6k7Lq0T7aGMoQHz3mP3Jx-u15-X1xcnZ0vjy8WndAiLwbsZKebqgZleA2G97ozUhuBAwoE3veStWxgijWybsuLg9aqhUFKrFSLYo98ffJdz-2EfYc-R1jZdXQTxAcbwNn_O97d2jHcW8PLcjgrBh-fDWL4NWPKdnKpw9UKPIY5Wa500_DG1Bv0wxv0Lsxxs5sNpZhmkptCfXqiuhhSijj8_Qyr7Oac9t85xR-vUpIx</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Shah, Chirag</creator><creator>Bosse, Stefan</creator><creator>von Hehl, Axel</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3581-6582</orcidid><orcidid>https://orcid.org/0000-0002-8774-6141</orcidid></search><sort><creationdate>20220701</creationdate><title>Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics</title><author>Shah, Chirag ; Bosse, Stefan ; von Hehl, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-fec4c8705a6925a92d8c94893efe3ea2dd41b1f161745bdd42a886baf44e06be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Classification</topic><topic>Composite materials</topic><topic>Computed tomography</topic><topic>Damage detection</topic><topic>Damage patterns</topic><topic>Data analysis</topic><topic>Design</topic><topic>Engineering</topic><topic>Fiber-metal laminates</topic><topic>Inspection</topic><topic>Knowledge sharing</topic><topic>Laminates</topic><topic>Linnaeus, Carolus (1707-1778)</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Systematic review</topic><topic>Taxonomy</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Chirag</creatorcontrib><creatorcontrib>Bosse, Stefan</creatorcontrib><creatorcontrib>von Hehl, Axel</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Chirag</au><au>Bosse, Stefan</au><au>von Hehl, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics</atitle><jtitle>Materials</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>15</volume><issue>13</issue><spage>4645</spage><pages>4645-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Due to the increasing use of the different composite materials in lightweight applications, such as in aerospace, it becomes crucial to understand the different damages occurring within them during life cycle and their possible inspection with different inspection techniques in different life cycle stages. A comprehensive classification of these damage patterns, measuring signals, and analysis methods using a taxonomical approach can help in this direction. In conjunction with the taxonomy, this work addresses damage diagnostics in hybrid and composite materials, such as fibre metal laminates (FMLs). A novel unified taxonomy atlas of damage patterns, measuring signals, and analysis methods is introduced. Analysis methods based on advanced supervised and unsupervised machine learning algorithms, such as autoencoders, self-organising maps, and convolutional neural networks, and a novel z-profiling method, are implemented. Besides formal aspects, an extended use case demonstrating damage identification in FML plates using X-ray computer tomography (X-ray CT) data is used to elaborate different data analysis techniques to amplify or detect damages and to show challenges.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35806767</pmid><doi>10.3390/ma15134645</doi><orcidid>https://orcid.org/0000-0002-3581-6582</orcidid><orcidid>https://orcid.org/0000-0002-8774-6141</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-07, Vol.15 (13), p.4645
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9267621
source MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access
subjects Algorithms
Artificial neural networks
Automation
Classification
Composite materials
Computed tomography
Damage detection
Damage patterns
Data analysis
Design
Engineering
Fiber-metal laminates
Inspection
Knowledge sharing
Laminates
Linnaeus, Carolus (1707-1778)
Literature reviews
Machine learning
Systematic review
Taxonomy
Tomography
title Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taxonomy%20of%20Damage%20Patterns%20in%20Composite%20Materials,%20Measuring%20Signals,%20and%20Methods%20for%20Automated%20Damage%20Diagnostics&rft.jtitle=Materials&rft.au=Shah,%20Chirag&rft.date=2022-07-01&rft.volume=15&rft.issue=13&rft.spage=4645&rft.pages=4645-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15134645&rft_dat=%3Cproquest_pubme%3E2686181429%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686181429&rft_id=info:pmid/35806767&rfr_iscdi=true