Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics
Due to the increasing use of the different composite materials in lightweight applications, such as in aerospace, it becomes crucial to understand the different damages occurring within them during life cycle and their possible inspection with different inspection techniques in different life cycle...
Gespeichert in:
Veröffentlicht in: | Materials 2022-07, Vol.15 (13), p.4645 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 4645 |
container_title | Materials |
container_volume | 15 |
creator | Shah, Chirag Bosse, Stefan von Hehl, Axel |
description | Due to the increasing use of the different composite materials in lightweight applications, such as in aerospace, it becomes crucial to understand the different damages occurring within them during life cycle and their possible inspection with different inspection techniques in different life cycle stages. A comprehensive classification of these damage patterns, measuring signals, and analysis methods using a taxonomical approach can help in this direction. In conjunction with the taxonomy, this work addresses damage diagnostics in hybrid and composite materials, such as fibre metal laminates (FMLs). A novel unified taxonomy atlas of damage patterns, measuring signals, and analysis methods is introduced. Analysis methods based on advanced supervised and unsupervised machine learning algorithms, such as autoencoders, self-organising maps, and convolutional neural networks, and a novel z-profiling method, are implemented. Besides formal aspects, an extended use case demonstrating damage identification in FML plates using X-ray computer tomography (X-ray CT) data is used to elaborate different data analysis techniques to amplify or detect damages and to show challenges. |
doi_str_mv | 10.3390/ma15134645 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9267621</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2686181429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-fec4c8705a6925a92d8c94893efe3ea2dd41b1f161745bdd42a886baf44e06be3</originalsourceid><addsrcrecordid>eNpdkV1LHTEQhkOpqKg3_oJAb0rpqZuPzSY3BTlWKygWqtdhdnd2jZxNTpOs1H_fHD9a69zM5J1nXsIMIYes-iKEqY4mYDUTUsn6HdllxqgFM1K-f1XvkIOU7qoSQjDNzTbZEbWuVKOaXZKu4XfwYXqgYaAnMMGI9AfkjNEn6jxdhmkdkstIL6GIDlbpM71ESHN0fqQ_3egfJfB9kfNt6BMdQqTHcw5TmehfTE8cjD6k7Lq0T7aGMoQHz3mP3Jx-u15-X1xcnZ0vjy8WndAiLwbsZKebqgZleA2G97ozUhuBAwoE3veStWxgijWybsuLg9aqhUFKrFSLYo98ffJdz-2EfYc-R1jZdXQTxAcbwNn_O97d2jHcW8PLcjgrBh-fDWL4NWPKdnKpw9UKPIY5Wa500_DG1Bv0wxv0Lsxxs5sNpZhmkptCfXqiuhhSijj8_Qyr7Oac9t85xR-vUpIx</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686181429</pqid></control><display><type>article</type><title>Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>PubMed Central Open Access</source><creator>Shah, Chirag ; Bosse, Stefan ; von Hehl, Axel</creator><creatorcontrib>Shah, Chirag ; Bosse, Stefan ; von Hehl, Axel</creatorcontrib><description>Due to the increasing use of the different composite materials in lightweight applications, such as in aerospace, it becomes crucial to understand the different damages occurring within them during life cycle and their possible inspection with different inspection techniques in different life cycle stages. A comprehensive classification of these damage patterns, measuring signals, and analysis methods using a taxonomical approach can help in this direction. In conjunction with the taxonomy, this work addresses damage diagnostics in hybrid and composite materials, such as fibre metal laminates (FMLs). A novel unified taxonomy atlas of damage patterns, measuring signals, and analysis methods is introduced. Analysis methods based on advanced supervised and unsupervised machine learning algorithms, such as autoencoders, self-organising maps, and convolutional neural networks, and a novel z-profiling method, are implemented. Besides formal aspects, an extended use case demonstrating damage identification in FML plates using X-ray computer tomography (X-ray CT) data is used to elaborate different data analysis techniques to amplify or detect damages and to show challenges.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15134645</identifier><identifier>PMID: 35806767</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial neural networks ; Automation ; Classification ; Composite materials ; Computed tomography ; Damage detection ; Damage patterns ; Data analysis ; Design ; Engineering ; Fiber-metal laminates ; Inspection ; Knowledge sharing ; Laminates ; Linnaeus, Carolus (1707-1778) ; Literature reviews ; Machine learning ; Systematic review ; Taxonomy ; Tomography</subject><ispartof>Materials, 2022-07, Vol.15 (13), p.4645</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-fec4c8705a6925a92d8c94893efe3ea2dd41b1f161745bdd42a886baf44e06be3</citedby><cites>FETCH-LOGICAL-c383t-fec4c8705a6925a92d8c94893efe3ea2dd41b1f161745bdd42a886baf44e06be3</cites><orcidid>0000-0002-3581-6582 ; 0000-0002-8774-6141</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267621/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267621/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids></links><search><creatorcontrib>Shah, Chirag</creatorcontrib><creatorcontrib>Bosse, Stefan</creatorcontrib><creatorcontrib>von Hehl, Axel</creatorcontrib><title>Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics</title><title>Materials</title><description>Due to the increasing use of the different composite materials in lightweight applications, such as in aerospace, it becomes crucial to understand the different damages occurring within them during life cycle and their possible inspection with different inspection techniques in different life cycle stages. A comprehensive classification of these damage patterns, measuring signals, and analysis methods using a taxonomical approach can help in this direction. In conjunction with the taxonomy, this work addresses damage diagnostics in hybrid and composite materials, such as fibre metal laminates (FMLs). A novel unified taxonomy atlas of damage patterns, measuring signals, and analysis methods is introduced. Analysis methods based on advanced supervised and unsupervised machine learning algorithms, such as autoencoders, self-organising maps, and convolutional neural networks, and a novel z-profiling method, are implemented. Besides formal aspects, an extended use case demonstrating damage identification in FML plates using X-ray computer tomography (X-ray CT) data is used to elaborate different data analysis techniques to amplify or detect damages and to show challenges.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Classification</subject><subject>Composite materials</subject><subject>Computed tomography</subject><subject>Damage detection</subject><subject>Damage patterns</subject><subject>Data analysis</subject><subject>Design</subject><subject>Engineering</subject><subject>Fiber-metal laminates</subject><subject>Inspection</subject><subject>Knowledge sharing</subject><subject>Laminates</subject><subject>Linnaeus, Carolus (1707-1778)</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Systematic review</subject><subject>Taxonomy</subject><subject>Tomography</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpdkV1LHTEQhkOpqKg3_oJAb0rpqZuPzSY3BTlWKygWqtdhdnd2jZxNTpOs1H_fHD9a69zM5J1nXsIMIYes-iKEqY4mYDUTUsn6HdllxqgFM1K-f1XvkIOU7qoSQjDNzTbZEbWuVKOaXZKu4XfwYXqgYaAnMMGI9AfkjNEn6jxdhmkdkstIL6GIDlbpM71ESHN0fqQ_3egfJfB9kfNt6BMdQqTHcw5TmehfTE8cjD6k7Lq0T7aGMoQHz3mP3Jx-u15-X1xcnZ0vjy8WndAiLwbsZKebqgZleA2G97ozUhuBAwoE3veStWxgijWybsuLg9aqhUFKrFSLYo98ffJdz-2EfYc-R1jZdXQTxAcbwNn_O97d2jHcW8PLcjgrBh-fDWL4NWPKdnKpw9UKPIY5Wa500_DG1Bv0wxv0Lsxxs5sNpZhmkptCfXqiuhhSijj8_Qyr7Oac9t85xR-vUpIx</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Shah, Chirag</creator><creator>Bosse, Stefan</creator><creator>von Hehl, Axel</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-3581-6582</orcidid><orcidid>https://orcid.org/0000-0002-8774-6141</orcidid></search><sort><creationdate>20220701</creationdate><title>Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics</title><author>Shah, Chirag ; Bosse, Stefan ; von Hehl, Axel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-fec4c8705a6925a92d8c94893efe3ea2dd41b1f161745bdd42a886baf44e06be3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Classification</topic><topic>Composite materials</topic><topic>Computed tomography</topic><topic>Damage detection</topic><topic>Damage patterns</topic><topic>Data analysis</topic><topic>Design</topic><topic>Engineering</topic><topic>Fiber-metal laminates</topic><topic>Inspection</topic><topic>Knowledge sharing</topic><topic>Laminates</topic><topic>Linnaeus, Carolus (1707-1778)</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Systematic review</topic><topic>Taxonomy</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shah, Chirag</creatorcontrib><creatorcontrib>Bosse, Stefan</creatorcontrib><creatorcontrib>von Hehl, Axel</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shah, Chirag</au><au>Bosse, Stefan</au><au>von Hehl, Axel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics</atitle><jtitle>Materials</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>15</volume><issue>13</issue><spage>4645</spage><pages>4645-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Due to the increasing use of the different composite materials in lightweight applications, such as in aerospace, it becomes crucial to understand the different damages occurring within them during life cycle and their possible inspection with different inspection techniques in different life cycle stages. A comprehensive classification of these damage patterns, measuring signals, and analysis methods using a taxonomical approach can help in this direction. In conjunction with the taxonomy, this work addresses damage diagnostics in hybrid and composite materials, such as fibre metal laminates (FMLs). A novel unified taxonomy atlas of damage patterns, measuring signals, and analysis methods is introduced. Analysis methods based on advanced supervised and unsupervised machine learning algorithms, such as autoencoders, self-organising maps, and convolutional neural networks, and a novel z-profiling method, are implemented. Besides formal aspects, an extended use case demonstrating damage identification in FML plates using X-ray computer tomography (X-ray CT) data is used to elaborate different data analysis techniques to amplify or detect damages and to show challenges.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35806767</pmid><doi>10.3390/ma15134645</doi><orcidid>https://orcid.org/0000-0002-3581-6582</orcidid><orcidid>https://orcid.org/0000-0002-8774-6141</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-07, Vol.15 (13), p.4645 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9267621 |
source | MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; PubMed Central Open Access |
subjects | Algorithms Artificial neural networks Automation Classification Composite materials Computed tomography Damage detection Damage patterns Data analysis Design Engineering Fiber-metal laminates Inspection Knowledge sharing Laminates Linnaeus, Carolus (1707-1778) Literature reviews Machine learning Systematic review Taxonomy Tomography |
title | Taxonomy of Damage Patterns in Composite Materials, Measuring Signals, and Methods for Automated Damage Diagnostics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A39%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Taxonomy%20of%20Damage%20Patterns%20in%20Composite%20Materials,%20Measuring%20Signals,%20and%20Methods%20for%20Automated%20Damage%20Diagnostics&rft.jtitle=Materials&rft.au=Shah,%20Chirag&rft.date=2022-07-01&rft.volume=15&rft.issue=13&rft.spage=4645&rft.pages=4645-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15134645&rft_dat=%3Cproquest_pubme%3E2686181429%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686181429&rft_id=info:pmid/35806767&rfr_iscdi=true |