Experimental Investigation and Parametric Optimization of the Tungsten Inert Gas Welding Process Parameters of Dissimilar Metals

Special attention is required when joining two materials with distinct chemical, physical and thermal properties in order to make the joint bond robust and rigid. The goal of this study was to see how significantly different tungsten inert gas (TIG) welding process parameters (welding current, gas f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-06, Vol.15 (13), p.4426
Hauptverfasser: Assefa, Anteneh Teferi, Ahmed, Gulam Mohammed Sayeed, Alamri, Sagr, Edacherian, Abhilash, Jiru, Moera Gutu, Pandey, Vivek, Hossain, Nazia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 13
container_start_page 4426
container_title Materials
container_volume 15
creator Assefa, Anteneh Teferi
Ahmed, Gulam Mohammed Sayeed
Alamri, Sagr
Edacherian, Abhilash
Jiru, Moera Gutu
Pandey, Vivek
Hossain, Nazia
description Special attention is required when joining two materials with distinct chemical, physical and thermal properties in order to make the joint bond robust and rigid. The goal of this study was to see how significantly different tungsten inert gas (TIG) welding process parameters (welding current, gas flow rate, root gap, and filler materials) affect mechanical properties (tensile, hardness, and flexural strength), as well as the bead width and microstructural properties, of dissimilar welds In comparison to SS 316 and AISI 1020 low-carbon steel. TIG welding parameters were optimized in this study using a Taguchi-based desirability function analysis (DFA). From the experimental results, it was observed that welded samples employing ER-309L filler wires had a microstructure consisting of a delta ferrite network in an austenite matrix. The tensile strength experimental results revealed that welding current, followed by GFR, was a highly influential parameter on tensile strength. Weld metals had higher hardness and flexural strength than stainless steel and carbon steel base metals. This was supported by the fact that the results of our tests had hardness ratings greater than a base for the FZ and HAZ, and that no crack was observed in the weld metal following U-shape flexural bending. Welding current has a significant impact on the bead width of welded specimens, followed by root gap. Furthermore, the dissimilar welded sample responses were optimized with a composite desirability percentage improvement of 22.90% by using a parametric setting of (A2B4C4D2). Finally, the validation of the experiment was validated by our confirmation test results, which agreed with the predictive optimum parameter settings.
doi_str_mv 10.3390/ma15134426
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9267495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2687725356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-8f254b1a4e109a3a87c19ecf08b058bbe68ac2c3485d2cc213828930ec4a4f913</originalsourceid><addsrcrecordid>eNpdkc9rVDEQx4MottRe_AsCXkRYzc-3yUWQttZCS3uoeAzzsvO2Ke8la5JX1JN_ulm2atu5zMB85jv5Zgh5zdl7KS37MAHXXColumdkn1vbLbhV6vmDeo8clnLLWkjJjbAvyZ7UhnVa833y--THBnOYMFYY6Vm8w1LDGmpIkUJc0SvIMGHNwdPLTQ1T-LXrpYHWG6TXc1yXirFNYq70FAr9huMqxDW9ysljKX8VMJft0HEopamMkOkFtpXlFXkxtISH9_mAfP18cn30ZXF-eXp29Ol84aWRdWEGoVXPQSFnFiSYpecW_cBMz7Tpe-wMeOGlMnolvBdcGmGsZOgVqMFyeUA-7nQ3cz_hyjfDGUa3ad4h_3QJgnvcieHGrdOds6JbKqubwNt7gZy-z-2b3BSKx3GEiGkuTnRmuRRa6q6hb56gt2nOsdnbUh3nQpst9W5H-ZxKyTj8ewxnbntb9_-28g9G25dq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686112586</pqid></control><display><type>article</type><title>Experimental Investigation and Parametric Optimization of the Tungsten Inert Gas Welding Process Parameters of Dissimilar Metals</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Assefa, Anteneh Teferi ; Ahmed, Gulam Mohammed Sayeed ; Alamri, Sagr ; Edacherian, Abhilash ; Jiru, Moera Gutu ; Pandey, Vivek ; Hossain, Nazia</creator><creatorcontrib>Assefa, Anteneh Teferi ; Ahmed, Gulam Mohammed Sayeed ; Alamri, Sagr ; Edacherian, Abhilash ; Jiru, Moera Gutu ; Pandey, Vivek ; Hossain, Nazia</creatorcontrib><description>Special attention is required when joining two materials with distinct chemical, physical and thermal properties in order to make the joint bond robust and rigid. The goal of this study was to see how significantly different tungsten inert gas (TIG) welding process parameters (welding current, gas flow rate, root gap, and filler materials) affect mechanical properties (tensile, hardness, and flexural strength), as well as the bead width and microstructural properties, of dissimilar welds In comparison to SS 316 and AISI 1020 low-carbon steel. TIG welding parameters were optimized in this study using a Taguchi-based desirability function analysis (DFA). From the experimental results, it was observed that welded samples employing ER-309L filler wires had a microstructure consisting of a delta ferrite network in an austenite matrix. The tensile strength experimental results revealed that welding current, followed by GFR, was a highly influential parameter on tensile strength. Weld metals had higher hardness and flexural strength than stainless steel and carbon steel base metals. This was supported by the fact that the results of our tests had hardness ratings greater than a base for the FZ and HAZ, and that no crack was observed in the weld metal following U-shape flexural bending. Welding current has a significant impact on the bead width of welded specimens, followed by root gap. Furthermore, the dissimilar welded sample responses were optimized with a composite desirability percentage improvement of 22.90% by using a parametric setting of (A2B4C4D2). Finally, the validation of the experiment was validated by our confirmation test results, which agreed with the predictive optimum parameter settings.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15134426</identifier><identifier>PMID: 35806551</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cooling ; Delta ferrite ; Dissimilar materials ; Dissimilar metals ; Electrodes ; Fillers ; Flexural strength ; Flow velocity ; Function analysis ; Gas flow ; Gas tungsten arc welding ; Gas welding ; Hardness ; Heat affected zone ; Heat conductivity ; Inert gas welding ; Low carbon steels ; Mechanical properties ; Metals ; Microstructure ; Modulus of rupture in bending ; Optimization ; Process parameters ; Rare gases ; Stainless steel ; Stainless steels ; Tensile strength ; Thermodynamic properties ; Welded joints</subject><ispartof>Materials, 2022-06, Vol.15 (13), p.4426</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-8f254b1a4e109a3a87c19ecf08b058bbe68ac2c3485d2cc213828930ec4a4f913</citedby><cites>FETCH-LOGICAL-c383t-8f254b1a4e109a3a87c19ecf08b058bbe68ac2c3485d2cc213828930ec4a4f913</cites><orcidid>0000-0002-0771-7667 ; 0000-0002-5594-264X ; 0000-0002-4435-3081 ; 0000-0001-7925-0894 ; 0000-0001-9570-7751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267495/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267495/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Assefa, Anteneh Teferi</creatorcontrib><creatorcontrib>Ahmed, Gulam Mohammed Sayeed</creatorcontrib><creatorcontrib>Alamri, Sagr</creatorcontrib><creatorcontrib>Edacherian, Abhilash</creatorcontrib><creatorcontrib>Jiru, Moera Gutu</creatorcontrib><creatorcontrib>Pandey, Vivek</creatorcontrib><creatorcontrib>Hossain, Nazia</creatorcontrib><title>Experimental Investigation and Parametric Optimization of the Tungsten Inert Gas Welding Process Parameters of Dissimilar Metals</title><title>Materials</title><description>Special attention is required when joining two materials with distinct chemical, physical and thermal properties in order to make the joint bond robust and rigid. The goal of this study was to see how significantly different tungsten inert gas (TIG) welding process parameters (welding current, gas flow rate, root gap, and filler materials) affect mechanical properties (tensile, hardness, and flexural strength), as well as the bead width and microstructural properties, of dissimilar welds In comparison to SS 316 and AISI 1020 low-carbon steel. TIG welding parameters were optimized in this study using a Taguchi-based desirability function analysis (DFA). From the experimental results, it was observed that welded samples employing ER-309L filler wires had a microstructure consisting of a delta ferrite network in an austenite matrix. The tensile strength experimental results revealed that welding current, followed by GFR, was a highly influential parameter on tensile strength. Weld metals had higher hardness and flexural strength than stainless steel and carbon steel base metals. This was supported by the fact that the results of our tests had hardness ratings greater than a base for the FZ and HAZ, and that no crack was observed in the weld metal following U-shape flexural bending. Welding current has a significant impact on the bead width of welded specimens, followed by root gap. Furthermore, the dissimilar welded sample responses were optimized with a composite desirability percentage improvement of 22.90% by using a parametric setting of (A2B4C4D2). Finally, the validation of the experiment was validated by our confirmation test results, which agreed with the predictive optimum parameter settings.</description><subject>Cooling</subject><subject>Delta ferrite</subject><subject>Dissimilar materials</subject><subject>Dissimilar metals</subject><subject>Electrodes</subject><subject>Fillers</subject><subject>Flexural strength</subject><subject>Flow velocity</subject><subject>Function analysis</subject><subject>Gas flow</subject><subject>Gas tungsten arc welding</subject><subject>Gas welding</subject><subject>Hardness</subject><subject>Heat affected zone</subject><subject>Heat conductivity</subject><subject>Inert gas welding</subject><subject>Low carbon steels</subject><subject>Mechanical properties</subject><subject>Metals</subject><subject>Microstructure</subject><subject>Modulus of rupture in bending</subject><subject>Optimization</subject><subject>Process parameters</subject><subject>Rare gases</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Tensile strength</subject><subject>Thermodynamic properties</subject><subject>Welded joints</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc9rVDEQx4MottRe_AsCXkRYzc-3yUWQttZCS3uoeAzzsvO2Ke8la5JX1JN_ulm2atu5zMB85jv5Zgh5zdl7KS37MAHXXColumdkn1vbLbhV6vmDeo8clnLLWkjJjbAvyZ7UhnVa833y--THBnOYMFYY6Vm8w1LDGmpIkUJc0SvIMGHNwdPLTQ1T-LXrpYHWG6TXc1yXirFNYq70FAr9huMqxDW9ysljKX8VMJft0HEopamMkOkFtpXlFXkxtISH9_mAfP18cn30ZXF-eXp29Ol84aWRdWEGoVXPQSFnFiSYpecW_cBMz7Tpe-wMeOGlMnolvBdcGmGsZOgVqMFyeUA-7nQ3cz_hyjfDGUa3ad4h_3QJgnvcieHGrdOds6JbKqubwNt7gZy-z-2b3BSKx3GEiGkuTnRmuRRa6q6hb56gt2nOsdnbUh3nQpst9W5H-ZxKyTj8ewxnbntb9_-28g9G25dq</recordid><startdate>20220623</startdate><enddate>20220623</enddate><creator>Assefa, Anteneh Teferi</creator><creator>Ahmed, Gulam Mohammed Sayeed</creator><creator>Alamri, Sagr</creator><creator>Edacherian, Abhilash</creator><creator>Jiru, Moera Gutu</creator><creator>Pandey, Vivek</creator><creator>Hossain, Nazia</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0771-7667</orcidid><orcidid>https://orcid.org/0000-0002-5594-264X</orcidid><orcidid>https://orcid.org/0000-0002-4435-3081</orcidid><orcidid>https://orcid.org/0000-0001-7925-0894</orcidid><orcidid>https://orcid.org/0000-0001-9570-7751</orcidid></search><sort><creationdate>20220623</creationdate><title>Experimental Investigation and Parametric Optimization of the Tungsten Inert Gas Welding Process Parameters of Dissimilar Metals</title><author>Assefa, Anteneh Teferi ; Ahmed, Gulam Mohammed Sayeed ; Alamri, Sagr ; Edacherian, Abhilash ; Jiru, Moera Gutu ; Pandey, Vivek ; Hossain, Nazia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-8f254b1a4e109a3a87c19ecf08b058bbe68ac2c3485d2cc213828930ec4a4f913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cooling</topic><topic>Delta ferrite</topic><topic>Dissimilar materials</topic><topic>Dissimilar metals</topic><topic>Electrodes</topic><topic>Fillers</topic><topic>Flexural strength</topic><topic>Flow velocity</topic><topic>Function analysis</topic><topic>Gas flow</topic><topic>Gas tungsten arc welding</topic><topic>Gas welding</topic><topic>Hardness</topic><topic>Heat affected zone</topic><topic>Heat conductivity</topic><topic>Inert gas welding</topic><topic>Low carbon steels</topic><topic>Mechanical properties</topic><topic>Metals</topic><topic>Microstructure</topic><topic>Modulus of rupture in bending</topic><topic>Optimization</topic><topic>Process parameters</topic><topic>Rare gases</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Tensile strength</topic><topic>Thermodynamic properties</topic><topic>Welded joints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Assefa, Anteneh Teferi</creatorcontrib><creatorcontrib>Ahmed, Gulam Mohammed Sayeed</creatorcontrib><creatorcontrib>Alamri, Sagr</creatorcontrib><creatorcontrib>Edacherian, Abhilash</creatorcontrib><creatorcontrib>Jiru, Moera Gutu</creatorcontrib><creatorcontrib>Pandey, Vivek</creatorcontrib><creatorcontrib>Hossain, Nazia</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Assefa, Anteneh Teferi</au><au>Ahmed, Gulam Mohammed Sayeed</au><au>Alamri, Sagr</au><au>Edacherian, Abhilash</au><au>Jiru, Moera Gutu</au><au>Pandey, Vivek</au><au>Hossain, Nazia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Investigation and Parametric Optimization of the Tungsten Inert Gas Welding Process Parameters of Dissimilar Metals</atitle><jtitle>Materials</jtitle><date>2022-06-23</date><risdate>2022</risdate><volume>15</volume><issue>13</issue><spage>4426</spage><pages>4426-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Special attention is required when joining two materials with distinct chemical, physical and thermal properties in order to make the joint bond robust and rigid. The goal of this study was to see how significantly different tungsten inert gas (TIG) welding process parameters (welding current, gas flow rate, root gap, and filler materials) affect mechanical properties (tensile, hardness, and flexural strength), as well as the bead width and microstructural properties, of dissimilar welds In comparison to SS 316 and AISI 1020 low-carbon steel. TIG welding parameters were optimized in this study using a Taguchi-based desirability function analysis (DFA). From the experimental results, it was observed that welded samples employing ER-309L filler wires had a microstructure consisting of a delta ferrite network in an austenite matrix. The tensile strength experimental results revealed that welding current, followed by GFR, was a highly influential parameter on tensile strength. Weld metals had higher hardness and flexural strength than stainless steel and carbon steel base metals. This was supported by the fact that the results of our tests had hardness ratings greater than a base for the FZ and HAZ, and that no crack was observed in the weld metal following U-shape flexural bending. Welding current has a significant impact on the bead width of welded specimens, followed by root gap. Furthermore, the dissimilar welded sample responses were optimized with a composite desirability percentage improvement of 22.90% by using a parametric setting of (A2B4C4D2). Finally, the validation of the experiment was validated by our confirmation test results, which agreed with the predictive optimum parameter settings.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35806551</pmid><doi>10.3390/ma15134426</doi><orcidid>https://orcid.org/0000-0002-0771-7667</orcidid><orcidid>https://orcid.org/0000-0002-5594-264X</orcidid><orcidid>https://orcid.org/0000-0002-4435-3081</orcidid><orcidid>https://orcid.org/0000-0001-7925-0894</orcidid><orcidid>https://orcid.org/0000-0001-9570-7751</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-06, Vol.15 (13), p.4426
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9267495
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Cooling
Delta ferrite
Dissimilar materials
Dissimilar metals
Electrodes
Fillers
Flexural strength
Flow velocity
Function analysis
Gas flow
Gas tungsten arc welding
Gas welding
Hardness
Heat affected zone
Heat conductivity
Inert gas welding
Low carbon steels
Mechanical properties
Metals
Microstructure
Modulus of rupture in bending
Optimization
Process parameters
Rare gases
Stainless steel
Stainless steels
Tensile strength
Thermodynamic properties
Welded joints
title Experimental Investigation and Parametric Optimization of the Tungsten Inert Gas Welding Process Parameters of Dissimilar Metals
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A08%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Investigation%20and%20Parametric%20Optimization%20of%20the%20Tungsten%20Inert%20Gas%20Welding%20Process%20Parameters%20of%20Dissimilar%20Metals&rft.jtitle=Materials&rft.au=Assefa,%20Anteneh%20Teferi&rft.date=2022-06-23&rft.volume=15&rft.issue=13&rft.spage=4426&rft.pages=4426-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15134426&rft_dat=%3Cproquest_pubme%3E2687725356%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686112586&rft_id=info:pmid/35806551&rfr_iscdi=true