Experimental Investigation and Parametric Optimization of the Tungsten Inert Gas Welding Process Parameters of Dissimilar Metals
Special attention is required when joining two materials with distinct chemical, physical and thermal properties in order to make the joint bond robust and rigid. The goal of this study was to see how significantly different tungsten inert gas (TIG) welding process parameters (welding current, gas f...
Gespeichert in:
Veröffentlicht in: | Materials 2022-06, Vol.15 (13), p.4426 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 4426 |
container_title | Materials |
container_volume | 15 |
creator | Assefa, Anteneh Teferi Ahmed, Gulam Mohammed Sayeed Alamri, Sagr Edacherian, Abhilash Jiru, Moera Gutu Pandey, Vivek Hossain, Nazia |
description | Special attention is required when joining two materials with distinct chemical, physical and thermal properties in order to make the joint bond robust and rigid. The goal of this study was to see how significantly different tungsten inert gas (TIG) welding process parameters (welding current, gas flow rate, root gap, and filler materials) affect mechanical properties (tensile, hardness, and flexural strength), as well as the bead width and microstructural properties, of dissimilar welds In comparison to SS 316 and AISI 1020 low-carbon steel. TIG welding parameters were optimized in this study using a Taguchi-based desirability function analysis (DFA). From the experimental results, it was observed that welded samples employing ER-309L filler wires had a microstructure consisting of a delta ferrite network in an austenite matrix. The tensile strength experimental results revealed that welding current, followed by GFR, was a highly influential parameter on tensile strength. Weld metals had higher hardness and flexural strength than stainless steel and carbon steel base metals. This was supported by the fact that the results of our tests had hardness ratings greater than a base for the FZ and HAZ, and that no crack was observed in the weld metal following U-shape flexural bending. Welding current has a significant impact on the bead width of welded specimens, followed by root gap. Furthermore, the dissimilar welded sample responses were optimized with a composite desirability percentage improvement of 22.90% by using a parametric setting of (A2B4C4D2). Finally, the validation of the experiment was validated by our confirmation test results, which agreed with the predictive optimum parameter settings. |
doi_str_mv | 10.3390/ma15134426 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9267495</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2687725356</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-8f254b1a4e109a3a87c19ecf08b058bbe68ac2c3485d2cc213828930ec4a4f913</originalsourceid><addsrcrecordid>eNpdkc9rVDEQx4MottRe_AsCXkRYzc-3yUWQttZCS3uoeAzzsvO2Ke8la5JX1JN_ulm2atu5zMB85jv5Zgh5zdl7KS37MAHXXColumdkn1vbLbhV6vmDeo8clnLLWkjJjbAvyZ7UhnVa833y--THBnOYMFYY6Vm8w1LDGmpIkUJc0SvIMGHNwdPLTQ1T-LXrpYHWG6TXc1yXirFNYq70FAr9huMqxDW9ysljKX8VMJft0HEopamMkOkFtpXlFXkxtISH9_mAfP18cn30ZXF-eXp29Ol84aWRdWEGoVXPQSFnFiSYpecW_cBMz7Tpe-wMeOGlMnolvBdcGmGsZOgVqMFyeUA-7nQ3cz_hyjfDGUa3ad4h_3QJgnvcieHGrdOds6JbKqubwNt7gZy-z-2b3BSKx3GEiGkuTnRmuRRa6q6hb56gt2nOsdnbUh3nQpst9W5H-ZxKyTj8ewxnbntb9_-28g9G25dq</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2686112586</pqid></control><display><type>article</type><title>Experimental Investigation and Parametric Optimization of the Tungsten Inert Gas Welding Process Parameters of Dissimilar Metals</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Assefa, Anteneh Teferi ; Ahmed, Gulam Mohammed Sayeed ; Alamri, Sagr ; Edacherian, Abhilash ; Jiru, Moera Gutu ; Pandey, Vivek ; Hossain, Nazia</creator><creatorcontrib>Assefa, Anteneh Teferi ; Ahmed, Gulam Mohammed Sayeed ; Alamri, Sagr ; Edacherian, Abhilash ; Jiru, Moera Gutu ; Pandey, Vivek ; Hossain, Nazia</creatorcontrib><description>Special attention is required when joining two materials with distinct chemical, physical and thermal properties in order to make the joint bond robust and rigid. The goal of this study was to see how significantly different tungsten inert gas (TIG) welding process parameters (welding current, gas flow rate, root gap, and filler materials) affect mechanical properties (tensile, hardness, and flexural strength), as well as the bead width and microstructural properties, of dissimilar welds In comparison to SS 316 and AISI 1020 low-carbon steel. TIG welding parameters were optimized in this study using a Taguchi-based desirability function analysis (DFA). From the experimental results, it was observed that welded samples employing ER-309L filler wires had a microstructure consisting of a delta ferrite network in an austenite matrix. The tensile strength experimental results revealed that welding current, followed by GFR, was a highly influential parameter on tensile strength. Weld metals had higher hardness and flexural strength than stainless steel and carbon steel base metals. This was supported by the fact that the results of our tests had hardness ratings greater than a base for the FZ and HAZ, and that no crack was observed in the weld metal following U-shape flexural bending. Welding current has a significant impact on the bead width of welded specimens, followed by root gap. Furthermore, the dissimilar welded sample responses were optimized with a composite desirability percentage improvement of 22.90% by using a parametric setting of (A2B4C4D2). Finally, the validation of the experiment was validated by our confirmation test results, which agreed with the predictive optimum parameter settings.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15134426</identifier><identifier>PMID: 35806551</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Cooling ; Delta ferrite ; Dissimilar materials ; Dissimilar metals ; Electrodes ; Fillers ; Flexural strength ; Flow velocity ; Function analysis ; Gas flow ; Gas tungsten arc welding ; Gas welding ; Hardness ; Heat affected zone ; Heat conductivity ; Inert gas welding ; Low carbon steels ; Mechanical properties ; Metals ; Microstructure ; Modulus of rupture in bending ; Optimization ; Process parameters ; Rare gases ; Stainless steel ; Stainless steels ; Tensile strength ; Thermodynamic properties ; Welded joints</subject><ispartof>Materials, 2022-06, Vol.15 (13), p.4426</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-8f254b1a4e109a3a87c19ecf08b058bbe68ac2c3485d2cc213828930ec4a4f913</citedby><cites>FETCH-LOGICAL-c383t-8f254b1a4e109a3a87c19ecf08b058bbe68ac2c3485d2cc213828930ec4a4f913</cites><orcidid>0000-0002-0771-7667 ; 0000-0002-5594-264X ; 0000-0002-4435-3081 ; 0000-0001-7925-0894 ; 0000-0001-9570-7751</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267495/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9267495/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Assefa, Anteneh Teferi</creatorcontrib><creatorcontrib>Ahmed, Gulam Mohammed Sayeed</creatorcontrib><creatorcontrib>Alamri, Sagr</creatorcontrib><creatorcontrib>Edacherian, Abhilash</creatorcontrib><creatorcontrib>Jiru, Moera Gutu</creatorcontrib><creatorcontrib>Pandey, Vivek</creatorcontrib><creatorcontrib>Hossain, Nazia</creatorcontrib><title>Experimental Investigation and Parametric Optimization of the Tungsten Inert Gas Welding Process Parameters of Dissimilar Metals</title><title>Materials</title><description>Special attention is required when joining two materials with distinct chemical, physical and thermal properties in order to make the joint bond robust and rigid. The goal of this study was to see how significantly different tungsten inert gas (TIG) welding process parameters (welding current, gas flow rate, root gap, and filler materials) affect mechanical properties (tensile, hardness, and flexural strength), as well as the bead width and microstructural properties, of dissimilar welds In comparison to SS 316 and AISI 1020 low-carbon steel. TIG welding parameters were optimized in this study using a Taguchi-based desirability function analysis (DFA). From the experimental results, it was observed that welded samples employing ER-309L filler wires had a microstructure consisting of a delta ferrite network in an austenite matrix. The tensile strength experimental results revealed that welding current, followed by GFR, was a highly influential parameter on tensile strength. Weld metals had higher hardness and flexural strength than stainless steel and carbon steel base metals. This was supported by the fact that the results of our tests had hardness ratings greater than a base for the FZ and HAZ, and that no crack was observed in the weld metal following U-shape flexural bending. Welding current has a significant impact on the bead width of welded specimens, followed by root gap. Furthermore, the dissimilar welded sample responses were optimized with a composite desirability percentage improvement of 22.90% by using a parametric setting of (A2B4C4D2). Finally, the validation of the experiment was validated by our confirmation test results, which agreed with the predictive optimum parameter settings.</description><subject>Cooling</subject><subject>Delta ferrite</subject><subject>Dissimilar materials</subject><subject>Dissimilar metals</subject><subject>Electrodes</subject><subject>Fillers</subject><subject>Flexural strength</subject><subject>Flow velocity</subject><subject>Function analysis</subject><subject>Gas flow</subject><subject>Gas tungsten arc welding</subject><subject>Gas welding</subject><subject>Hardness</subject><subject>Heat affected zone</subject><subject>Heat conductivity</subject><subject>Inert gas welding</subject><subject>Low carbon steels</subject><subject>Mechanical properties</subject><subject>Metals</subject><subject>Microstructure</subject><subject>Modulus of rupture in bending</subject><subject>Optimization</subject><subject>Process parameters</subject><subject>Rare gases</subject><subject>Stainless steel</subject><subject>Stainless steels</subject><subject>Tensile strength</subject><subject>Thermodynamic properties</subject><subject>Welded joints</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc9rVDEQx4MottRe_AsCXkRYzc-3yUWQttZCS3uoeAzzsvO2Ke8la5JX1JN_ulm2atu5zMB85jv5Zgh5zdl7KS37MAHXXColumdkn1vbLbhV6vmDeo8clnLLWkjJjbAvyZ7UhnVa833y--THBnOYMFYY6Vm8w1LDGmpIkUJc0SvIMGHNwdPLTQ1T-LXrpYHWG6TXc1yXirFNYq70FAr9huMqxDW9ysljKX8VMJft0HEopamMkOkFtpXlFXkxtISH9_mAfP18cn30ZXF-eXp29Ol84aWRdWEGoVXPQSFnFiSYpecW_cBMz7Tpe-wMeOGlMnolvBdcGmGsZOgVqMFyeUA-7nQ3cz_hyjfDGUa3ad4h_3QJgnvcieHGrdOds6JbKqubwNt7gZy-z-2b3BSKx3GEiGkuTnRmuRRa6q6hb56gt2nOsdnbUh3nQpst9W5H-ZxKyTj8ewxnbntb9_-28g9G25dq</recordid><startdate>20220623</startdate><enddate>20220623</enddate><creator>Assefa, Anteneh Teferi</creator><creator>Ahmed, Gulam Mohammed Sayeed</creator><creator>Alamri, Sagr</creator><creator>Edacherian, Abhilash</creator><creator>Jiru, Moera Gutu</creator><creator>Pandey, Vivek</creator><creator>Hossain, Nazia</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0771-7667</orcidid><orcidid>https://orcid.org/0000-0002-5594-264X</orcidid><orcidid>https://orcid.org/0000-0002-4435-3081</orcidid><orcidid>https://orcid.org/0000-0001-7925-0894</orcidid><orcidid>https://orcid.org/0000-0001-9570-7751</orcidid></search><sort><creationdate>20220623</creationdate><title>Experimental Investigation and Parametric Optimization of the Tungsten Inert Gas Welding Process Parameters of Dissimilar Metals</title><author>Assefa, Anteneh Teferi ; Ahmed, Gulam Mohammed Sayeed ; Alamri, Sagr ; Edacherian, Abhilash ; Jiru, Moera Gutu ; Pandey, Vivek ; Hossain, Nazia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-8f254b1a4e109a3a87c19ecf08b058bbe68ac2c3485d2cc213828930ec4a4f913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Cooling</topic><topic>Delta ferrite</topic><topic>Dissimilar materials</topic><topic>Dissimilar metals</topic><topic>Electrodes</topic><topic>Fillers</topic><topic>Flexural strength</topic><topic>Flow velocity</topic><topic>Function analysis</topic><topic>Gas flow</topic><topic>Gas tungsten arc welding</topic><topic>Gas welding</topic><topic>Hardness</topic><topic>Heat affected zone</topic><topic>Heat conductivity</topic><topic>Inert gas welding</topic><topic>Low carbon steels</topic><topic>Mechanical properties</topic><topic>Metals</topic><topic>Microstructure</topic><topic>Modulus of rupture in bending</topic><topic>Optimization</topic><topic>Process parameters</topic><topic>Rare gases</topic><topic>Stainless steel</topic><topic>Stainless steels</topic><topic>Tensile strength</topic><topic>Thermodynamic properties</topic><topic>Welded joints</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Assefa, Anteneh Teferi</creatorcontrib><creatorcontrib>Ahmed, Gulam Mohammed Sayeed</creatorcontrib><creatorcontrib>Alamri, Sagr</creatorcontrib><creatorcontrib>Edacherian, Abhilash</creatorcontrib><creatorcontrib>Jiru, Moera Gutu</creatorcontrib><creatorcontrib>Pandey, Vivek</creatorcontrib><creatorcontrib>Hossain, Nazia</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Assefa, Anteneh Teferi</au><au>Ahmed, Gulam Mohammed Sayeed</au><au>Alamri, Sagr</au><au>Edacherian, Abhilash</au><au>Jiru, Moera Gutu</au><au>Pandey, Vivek</au><au>Hossain, Nazia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental Investigation and Parametric Optimization of the Tungsten Inert Gas Welding Process Parameters of Dissimilar Metals</atitle><jtitle>Materials</jtitle><date>2022-06-23</date><risdate>2022</risdate><volume>15</volume><issue>13</issue><spage>4426</spage><pages>4426-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>Special attention is required when joining two materials with distinct chemical, physical and thermal properties in order to make the joint bond robust and rigid. The goal of this study was to see how significantly different tungsten inert gas (TIG) welding process parameters (welding current, gas flow rate, root gap, and filler materials) affect mechanical properties (tensile, hardness, and flexural strength), as well as the bead width and microstructural properties, of dissimilar welds In comparison to SS 316 and AISI 1020 low-carbon steel. TIG welding parameters were optimized in this study using a Taguchi-based desirability function analysis (DFA). From the experimental results, it was observed that welded samples employing ER-309L filler wires had a microstructure consisting of a delta ferrite network in an austenite matrix. The tensile strength experimental results revealed that welding current, followed by GFR, was a highly influential parameter on tensile strength. Weld metals had higher hardness and flexural strength than stainless steel and carbon steel base metals. This was supported by the fact that the results of our tests had hardness ratings greater than a base for the FZ and HAZ, and that no crack was observed in the weld metal following U-shape flexural bending. Welding current has a significant impact on the bead width of welded specimens, followed by root gap. Furthermore, the dissimilar welded sample responses were optimized with a composite desirability percentage improvement of 22.90% by using a parametric setting of (A2B4C4D2). Finally, the validation of the experiment was validated by our confirmation test results, which agreed with the predictive optimum parameter settings.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35806551</pmid><doi>10.3390/ma15134426</doi><orcidid>https://orcid.org/0000-0002-0771-7667</orcidid><orcidid>https://orcid.org/0000-0002-5594-264X</orcidid><orcidid>https://orcid.org/0000-0002-4435-3081</orcidid><orcidid>https://orcid.org/0000-0001-7925-0894</orcidid><orcidid>https://orcid.org/0000-0001-9570-7751</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1996-1944 |
ispartof | Materials, 2022-06, Vol.15 (13), p.4426 |
issn | 1996-1944 1996-1944 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9267495 |
source | PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Cooling Delta ferrite Dissimilar materials Dissimilar metals Electrodes Fillers Flexural strength Flow velocity Function analysis Gas flow Gas tungsten arc welding Gas welding Hardness Heat affected zone Heat conductivity Inert gas welding Low carbon steels Mechanical properties Metals Microstructure Modulus of rupture in bending Optimization Process parameters Rare gases Stainless steel Stainless steels Tensile strength Thermodynamic properties Welded joints |
title | Experimental Investigation and Parametric Optimization of the Tungsten Inert Gas Welding Process Parameters of Dissimilar Metals |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T03%3A08%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20Investigation%20and%20Parametric%20Optimization%20of%20the%20Tungsten%20Inert%20Gas%20Welding%20Process%20Parameters%20of%20Dissimilar%20Metals&rft.jtitle=Materials&rft.au=Assefa,%20Anteneh%20Teferi&rft.date=2022-06-23&rft.volume=15&rft.issue=13&rft.spage=4426&rft.pages=4426-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15134426&rft_dat=%3Cproquest_pubme%3E2687725356%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2686112586&rft_id=info:pmid/35806551&rfr_iscdi=true |