Single-Cell Metabolic Profiling of Macrophages Using 3D OrbiSIMS: Correlations with Phenotype

Macrophages are important immune cells that respond to environmental cues acquiring a range of activation statuses represented by pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes at each end of their spectrum. Characterizing the metabolic signature (metabolic profiling) of different macro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical chemistry (Washington) 2022-07, Vol.94 (26), p.9389-9398
Hauptverfasser: Suvannapruk, Waraporn, Edney, Max K., Kim, Dong-Hyun, Scurr, David J., Ghaemmaghami, Amir M., Alexander, Morgan R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 9398
container_issue 26
container_start_page 9389
container_title Analytical chemistry (Washington)
container_volume 94
creator Suvannapruk, Waraporn
Edney, Max K.
Kim, Dong-Hyun
Scurr, David J.
Ghaemmaghami, Amir M.
Alexander, Morgan R.
description Macrophages are important immune cells that respond to environmental cues acquiring a range of activation statuses represented by pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes at each end of their spectrum. Characterizing the metabolic signature (metabolic profiling) of different macrophage subsets is a powerful tool to understand the response of the human immune system to different stimuli. Here, the recently developed 3D OrbiSIMS instrument is applied to yield useful insight into the metabolome from individual cells after in vitro differentiation of macrophages into naïve, M1, and M2 phenotypes using different cytokines. This analysis strategy not only requires more than 6 orders of magnitude less sample than traditional mass spectrometry approaches but also allows the study of cell-to-cell variance. Characteristic metabolites in macrophage subsets are identified using a targeted lipid and data-driven multivariate approach highlighting amino acids and other small molecules. The diamino acids alanylasparagine and lipid sphingomyelin SM­(d18/16:0) are uniquely found in M1 macrophages, while pyridine and pyrimidine are observed at increased intensity in M2 macrophages, findings which link to known biological pathways. The first demonstration of this capability illustrates the great potential of direct cell analysis for in situ metabolite profiling with the 3D OrbiSIMS to probe functional phenotype at the single-cell level using molecular signatures and to understand the response of the human body to implanted devices and immune diseases.
doi_str_mv 10.1021/acs.analchem.2c01375
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9260720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691519004</sourcerecordid><originalsourceid>FETCH-LOGICAL-a454t-b861b0fee923338ea80feff0355b9ea2ffab65543616dc0a716d81fa1b6de22b3</originalsourceid><addsrcrecordid>eNp9kUFvEzEQhS0EoqHwDzhY4sJlw9hee70ckFAKbaVGrRR6RJa9GWddbdbB3oD673GUUAkOnEb2-97TaB4hbxnMGXD2wXZ5bkc7dD1u57wDJhr5jMyY5FAprflzMgMAUfEG4Iy8yvkBgDFg6iU5E7JhQjftjHxfhXEzYLXAYaBLnKyLQ-joXYo-DEWi0dOl7VLc9XaDmd7nw6e4oLfJhdX1cvWRLmJKONgpxDHTX2Hq6V2PY5wed_iavPB2yPjmNM_J_dcv3xZX1c3t5fXi801la1lPldOKOfCILRdCaLS6PLwHIaVr0XLvrVNS1kIxte7ANmVo5i1zao2cO3FOPh1zd3u3xXWH45TsYHYpbG16NNEG87cyht5s4k_TcgUNhxLw_hSQ4o895slsQ-7KTeyIcZ8NV42uuS4LFPTdP-hD3KdSxIFqmWQtQF2o-kiV0-Wc0D8tw8Ac-jOlP_OnP3Pqr9jgaDuoT7n_tfwGKxehLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691519004</pqid></control><display><type>article</type><title>Single-Cell Metabolic Profiling of Macrophages Using 3D OrbiSIMS: Correlations with Phenotype</title><source>ACS Publications</source><creator>Suvannapruk, Waraporn ; Edney, Max K. ; Kim, Dong-Hyun ; Scurr, David J. ; Ghaemmaghami, Amir M. ; Alexander, Morgan R.</creator><creatorcontrib>Suvannapruk, Waraporn ; Edney, Max K. ; Kim, Dong-Hyun ; Scurr, David J. ; Ghaemmaghami, Amir M. ; Alexander, Morgan R.</creatorcontrib><description>Macrophages are important immune cells that respond to environmental cues acquiring a range of activation statuses represented by pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes at each end of their spectrum. Characterizing the metabolic signature (metabolic profiling) of different macrophage subsets is a powerful tool to understand the response of the human immune system to different stimuli. Here, the recently developed 3D OrbiSIMS instrument is applied to yield useful insight into the metabolome from individual cells after in vitro differentiation of macrophages into naïve, M1, and M2 phenotypes using different cytokines. This analysis strategy not only requires more than 6 orders of magnitude less sample than traditional mass spectrometry approaches but also allows the study of cell-to-cell variance. Characteristic metabolites in macrophage subsets are identified using a targeted lipid and data-driven multivariate approach highlighting amino acids and other small molecules. The diamino acids alanylasparagine and lipid sphingomyelin SM­(d18/16:0) are uniquely found in M1 macrophages, while pyridine and pyrimidine are observed at increased intensity in M2 macrophages, findings which link to known biological pathways. The first demonstration of this capability illustrates the great potential of direct cell analysis for in situ metabolite profiling with the 3D OrbiSIMS to probe functional phenotype at the single-cell level using molecular signatures and to understand the response of the human body to implanted devices and immune diseases.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c01375</identifier><identifier>PMID: 35713879</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Amino acids ; Analytical chemistry ; Cell differentiation ; Chemistry ; Cytokines ; Immune system ; Immunological diseases ; Inflammation ; Lipids ; Macrophages ; Mass spectrometry ; Mass spectroscopy ; Metabolism ; Metabolites ; Multivariate analysis ; Phenotypes ; Sphingomyelin</subject><ispartof>Analytical chemistry (Washington), 2022-07, Vol.94 (26), p.9389-9398</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Jul 5, 2022</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a454t-b861b0fee923338ea80feff0355b9ea2ffab65543616dc0a716d81fa1b6de22b3</citedby><cites>FETCH-LOGICAL-a454t-b861b0fee923338ea80feff0355b9ea2ffab65543616dc0a716d81fa1b6de22b3</cites><orcidid>0000-0003-3160-8759 ; 0000-0003-3438-5060 ; 0000-0003-0859-3886 ; 0000-0002-3689-2130 ; 0000-0001-9138-9418 ; 0000-0001-5182-493X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.2c01375$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c01375$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Suvannapruk, Waraporn</creatorcontrib><creatorcontrib>Edney, Max K.</creatorcontrib><creatorcontrib>Kim, Dong-Hyun</creatorcontrib><creatorcontrib>Scurr, David J.</creatorcontrib><creatorcontrib>Ghaemmaghami, Amir M.</creatorcontrib><creatorcontrib>Alexander, Morgan R.</creatorcontrib><title>Single-Cell Metabolic Profiling of Macrophages Using 3D OrbiSIMS: Correlations with Phenotype</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Macrophages are important immune cells that respond to environmental cues acquiring a range of activation statuses represented by pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes at each end of their spectrum. Characterizing the metabolic signature (metabolic profiling) of different macrophage subsets is a powerful tool to understand the response of the human immune system to different stimuli. Here, the recently developed 3D OrbiSIMS instrument is applied to yield useful insight into the metabolome from individual cells after in vitro differentiation of macrophages into naïve, M1, and M2 phenotypes using different cytokines. This analysis strategy not only requires more than 6 orders of magnitude less sample than traditional mass spectrometry approaches but also allows the study of cell-to-cell variance. Characteristic metabolites in macrophage subsets are identified using a targeted lipid and data-driven multivariate approach highlighting amino acids and other small molecules. The diamino acids alanylasparagine and lipid sphingomyelin SM­(d18/16:0) are uniquely found in M1 macrophages, while pyridine and pyrimidine are observed at increased intensity in M2 macrophages, findings which link to known biological pathways. The first demonstration of this capability illustrates the great potential of direct cell analysis for in situ metabolite profiling with the 3D OrbiSIMS to probe functional phenotype at the single-cell level using molecular signatures and to understand the response of the human body to implanted devices and immune diseases.</description><subject>Amino acids</subject><subject>Analytical chemistry</subject><subject>Cell differentiation</subject><subject>Chemistry</subject><subject>Cytokines</subject><subject>Immune system</subject><subject>Immunological diseases</subject><subject>Inflammation</subject><subject>Lipids</subject><subject>Macrophages</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Multivariate analysis</subject><subject>Phenotypes</subject><subject>Sphingomyelin</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUFvEzEQhS0EoqHwDzhY4sJlw9hee70ckFAKbaVGrRR6RJa9GWddbdbB3oD673GUUAkOnEb2-97TaB4hbxnMGXD2wXZ5bkc7dD1u57wDJhr5jMyY5FAprflzMgMAUfEG4Iy8yvkBgDFg6iU5E7JhQjftjHxfhXEzYLXAYaBLnKyLQ-joXYo-DEWi0dOl7VLc9XaDmd7nw6e4oLfJhdX1cvWRLmJKONgpxDHTX2Hq6V2PY5wed_iavPB2yPjmNM_J_dcv3xZX1c3t5fXi801la1lPldOKOfCILRdCaLS6PLwHIaVr0XLvrVNS1kIxte7ANmVo5i1zao2cO3FOPh1zd3u3xXWH45TsYHYpbG16NNEG87cyht5s4k_TcgUNhxLw_hSQ4o895slsQ-7KTeyIcZ8NV42uuS4LFPTdP-hD3KdSxIFqmWQtQF2o-kiV0-Wc0D8tw8Ac-jOlP_OnP3Pqr9jgaDuoT7n_tfwGKxehLg</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Suvannapruk, Waraporn</creator><creator>Edney, Max K.</creator><creator>Kim, Dong-Hyun</creator><creator>Scurr, David J.</creator><creator>Ghaemmaghami, Amir M.</creator><creator>Alexander, Morgan R.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3160-8759</orcidid><orcidid>https://orcid.org/0000-0003-3438-5060</orcidid><orcidid>https://orcid.org/0000-0003-0859-3886</orcidid><orcidid>https://orcid.org/0000-0002-3689-2130</orcidid><orcidid>https://orcid.org/0000-0001-9138-9418</orcidid><orcidid>https://orcid.org/0000-0001-5182-493X</orcidid></search><sort><creationdate>20220705</creationdate><title>Single-Cell Metabolic Profiling of Macrophages Using 3D OrbiSIMS: Correlations with Phenotype</title><author>Suvannapruk, Waraporn ; Edney, Max K. ; Kim, Dong-Hyun ; Scurr, David J. ; Ghaemmaghami, Amir M. ; Alexander, Morgan R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a454t-b861b0fee923338ea80feff0355b9ea2ffab65543616dc0a716d81fa1b6de22b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Analytical chemistry</topic><topic>Cell differentiation</topic><topic>Chemistry</topic><topic>Cytokines</topic><topic>Immune system</topic><topic>Immunological diseases</topic><topic>Inflammation</topic><topic>Lipids</topic><topic>Macrophages</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Multivariate analysis</topic><topic>Phenotypes</topic><topic>Sphingomyelin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suvannapruk, Waraporn</creatorcontrib><creatorcontrib>Edney, Max K.</creatorcontrib><creatorcontrib>Kim, Dong-Hyun</creatorcontrib><creatorcontrib>Scurr, David J.</creatorcontrib><creatorcontrib>Ghaemmaghami, Amir M.</creatorcontrib><creatorcontrib>Alexander, Morgan R.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suvannapruk, Waraporn</au><au>Edney, Max K.</au><au>Kim, Dong-Hyun</au><au>Scurr, David J.</au><au>Ghaemmaghami, Amir M.</au><au>Alexander, Morgan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Cell Metabolic Profiling of Macrophages Using 3D OrbiSIMS: Correlations with Phenotype</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-07-05</date><risdate>2022</risdate><volume>94</volume><issue>26</issue><spage>9389</spage><epage>9398</epage><pages>9389-9398</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Macrophages are important immune cells that respond to environmental cues acquiring a range of activation statuses represented by pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes at each end of their spectrum. Characterizing the metabolic signature (metabolic profiling) of different macrophage subsets is a powerful tool to understand the response of the human immune system to different stimuli. Here, the recently developed 3D OrbiSIMS instrument is applied to yield useful insight into the metabolome from individual cells after in vitro differentiation of macrophages into naïve, M1, and M2 phenotypes using different cytokines. This analysis strategy not only requires more than 6 orders of magnitude less sample than traditional mass spectrometry approaches but also allows the study of cell-to-cell variance. Characteristic metabolites in macrophage subsets are identified using a targeted lipid and data-driven multivariate approach highlighting amino acids and other small molecules. The diamino acids alanylasparagine and lipid sphingomyelin SM­(d18/16:0) are uniquely found in M1 macrophages, while pyridine and pyrimidine are observed at increased intensity in M2 macrophages, findings which link to known biological pathways. The first demonstration of this capability illustrates the great potential of direct cell analysis for in situ metabolite profiling with the 3D OrbiSIMS to probe functional phenotype at the single-cell level using molecular signatures and to understand the response of the human body to implanted devices and immune diseases.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><pmid>35713879</pmid><doi>10.1021/acs.analchem.2c01375</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3160-8759</orcidid><orcidid>https://orcid.org/0000-0003-3438-5060</orcidid><orcidid>https://orcid.org/0000-0003-0859-3886</orcidid><orcidid>https://orcid.org/0000-0002-3689-2130</orcidid><orcidid>https://orcid.org/0000-0001-9138-9418</orcidid><orcidid>https://orcid.org/0000-0001-5182-493X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0003-2700
ispartof Analytical chemistry (Washington), 2022-07, Vol.94 (26), p.9389-9398
issn 0003-2700
1520-6882
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9260720
source ACS Publications
subjects Amino acids
Analytical chemistry
Cell differentiation
Chemistry
Cytokines
Immune system
Immunological diseases
Inflammation
Lipids
Macrophages
Mass spectrometry
Mass spectroscopy
Metabolism
Metabolites
Multivariate analysis
Phenotypes
Sphingomyelin
title Single-Cell Metabolic Profiling of Macrophages Using 3D OrbiSIMS: Correlations with Phenotype
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Cell%20Metabolic%20Profiling%20of%20Macrophages%20Using%203D%20OrbiSIMS:%20Correlations%20with%20Phenotype&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Suvannapruk,%20Waraporn&rft.date=2022-07-05&rft.volume=94&rft.issue=26&rft.spage=9389&rft.epage=9398&rft.pages=9389-9398&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c01375&rft_dat=%3Cproquest_pubme%3E2691519004%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691519004&rft_id=info:pmid/35713879&rfr_iscdi=true