Single-Cell Metabolic Profiling of Macrophages Using 3D OrbiSIMS: Correlations with Phenotype
Macrophages are important immune cells that respond to environmental cues acquiring a range of activation statuses represented by pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes at each end of their spectrum. Characterizing the metabolic signature (metabolic profiling) of different macro...
Gespeichert in:
Veröffentlicht in: | Analytical chemistry (Washington) 2022-07, Vol.94 (26), p.9389-9398 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 9398 |
---|---|
container_issue | 26 |
container_start_page | 9389 |
container_title | Analytical chemistry (Washington) |
container_volume | 94 |
creator | Suvannapruk, Waraporn Edney, Max K. Kim, Dong-Hyun Scurr, David J. Ghaemmaghami, Amir M. Alexander, Morgan R. |
description | Macrophages are important immune cells that respond to environmental cues acquiring a range of activation statuses represented by pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes at each end of their spectrum. Characterizing the metabolic signature (metabolic profiling) of different macrophage subsets is a powerful tool to understand the response of the human immune system to different stimuli. Here, the recently developed 3D OrbiSIMS instrument is applied to yield useful insight into the metabolome from individual cells after in vitro differentiation of macrophages into naïve, M1, and M2 phenotypes using different cytokines. This analysis strategy not only requires more than 6 orders of magnitude less sample than traditional mass spectrometry approaches but also allows the study of cell-to-cell variance. Characteristic metabolites in macrophage subsets are identified using a targeted lipid and data-driven multivariate approach highlighting amino acids and other small molecules. The diamino acids alanylasparagine and lipid sphingomyelin SM(d18/16:0) are uniquely found in M1 macrophages, while pyridine and pyrimidine are observed at increased intensity in M2 macrophages, findings which link to known biological pathways. The first demonstration of this capability illustrates the great potential of direct cell analysis for in situ metabolite profiling with the 3D OrbiSIMS to probe functional phenotype at the single-cell level using molecular signatures and to understand the response of the human body to implanted devices and immune diseases. |
doi_str_mv | 10.1021/acs.analchem.2c01375 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9260720</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2691519004</sourcerecordid><originalsourceid>FETCH-LOGICAL-a454t-b861b0fee923338ea80feff0355b9ea2ffab65543616dc0a716d81fa1b6de22b3</originalsourceid><addsrcrecordid>eNp9kUFvEzEQhS0EoqHwDzhY4sJlw9hee70ckFAKbaVGrRR6RJa9GWddbdbB3oD673GUUAkOnEb2-97TaB4hbxnMGXD2wXZ5bkc7dD1u57wDJhr5jMyY5FAprflzMgMAUfEG4Iy8yvkBgDFg6iU5E7JhQjftjHxfhXEzYLXAYaBLnKyLQ-joXYo-DEWi0dOl7VLc9XaDmd7nw6e4oLfJhdX1cvWRLmJKONgpxDHTX2Hq6V2PY5wed_iavPB2yPjmNM_J_dcv3xZX1c3t5fXi801la1lPldOKOfCILRdCaLS6PLwHIaVr0XLvrVNS1kIxte7ANmVo5i1zao2cO3FOPh1zd3u3xXWH45TsYHYpbG16NNEG87cyht5s4k_TcgUNhxLw_hSQ4o895slsQ-7KTeyIcZ8NV42uuS4LFPTdP-hD3KdSxIFqmWQtQF2o-kiV0-Wc0D8tw8Ac-jOlP_OnP3Pqr9jgaDuoT7n_tfwGKxehLg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2691519004</pqid></control><display><type>article</type><title>Single-Cell Metabolic Profiling of Macrophages Using 3D OrbiSIMS: Correlations with Phenotype</title><source>ACS Publications</source><creator>Suvannapruk, Waraporn ; Edney, Max K. ; Kim, Dong-Hyun ; Scurr, David J. ; Ghaemmaghami, Amir M. ; Alexander, Morgan R.</creator><creatorcontrib>Suvannapruk, Waraporn ; Edney, Max K. ; Kim, Dong-Hyun ; Scurr, David J. ; Ghaemmaghami, Amir M. ; Alexander, Morgan R.</creatorcontrib><description>Macrophages are important immune cells that respond to environmental cues acquiring a range of activation statuses represented by pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes at each end of their spectrum. Characterizing the metabolic signature (metabolic profiling) of different macrophage subsets is a powerful tool to understand the response of the human immune system to different stimuli. Here, the recently developed 3D OrbiSIMS instrument is applied to yield useful insight into the metabolome from individual cells after in vitro differentiation of macrophages into naïve, M1, and M2 phenotypes using different cytokines. This analysis strategy not only requires more than 6 orders of magnitude less sample than traditional mass spectrometry approaches but also allows the study of cell-to-cell variance. Characteristic metabolites in macrophage subsets are identified using a targeted lipid and data-driven multivariate approach highlighting amino acids and other small molecules. The diamino acids alanylasparagine and lipid sphingomyelin SM(d18/16:0) are uniquely found in M1 macrophages, while pyridine and pyrimidine are observed at increased intensity in M2 macrophages, findings which link to known biological pathways. The first demonstration of this capability illustrates the great potential of direct cell analysis for in situ metabolite profiling with the 3D OrbiSIMS to probe functional phenotype at the single-cell level using molecular signatures and to understand the response of the human body to implanted devices and immune diseases.</description><identifier>ISSN: 0003-2700</identifier><identifier>EISSN: 1520-6882</identifier><identifier>DOI: 10.1021/acs.analchem.2c01375</identifier><identifier>PMID: 35713879</identifier><language>eng</language><publisher>Washington: American Chemical Society</publisher><subject>Amino acids ; Analytical chemistry ; Cell differentiation ; Chemistry ; Cytokines ; Immune system ; Immunological diseases ; Inflammation ; Lipids ; Macrophages ; Mass spectrometry ; Mass spectroscopy ; Metabolism ; Metabolites ; Multivariate analysis ; Phenotypes ; Sphingomyelin</subject><ispartof>Analytical chemistry (Washington), 2022-07, Vol.94 (26), p.9389-9398</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>Copyright American Chemical Society Jul 5, 2022</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a454t-b861b0fee923338ea80feff0355b9ea2ffab65543616dc0a716d81fa1b6de22b3</citedby><cites>FETCH-LOGICAL-a454t-b861b0fee923338ea80feff0355b9ea2ffab65543616dc0a716d81fa1b6de22b3</cites><orcidid>0000-0003-3160-8759 ; 0000-0003-3438-5060 ; 0000-0003-0859-3886 ; 0000-0002-3689-2130 ; 0000-0001-9138-9418 ; 0000-0001-5182-493X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.analchem.2c01375$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.analchem.2c01375$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,777,781,882,2752,27057,27905,27906,56719,56769</link.rule.ids></links><search><creatorcontrib>Suvannapruk, Waraporn</creatorcontrib><creatorcontrib>Edney, Max K.</creatorcontrib><creatorcontrib>Kim, Dong-Hyun</creatorcontrib><creatorcontrib>Scurr, David J.</creatorcontrib><creatorcontrib>Ghaemmaghami, Amir M.</creatorcontrib><creatorcontrib>Alexander, Morgan R.</creatorcontrib><title>Single-Cell Metabolic Profiling of Macrophages Using 3D OrbiSIMS: Correlations with Phenotype</title><title>Analytical chemistry (Washington)</title><addtitle>Anal. Chem</addtitle><description>Macrophages are important immune cells that respond to environmental cues acquiring a range of activation statuses represented by pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes at each end of their spectrum. Characterizing the metabolic signature (metabolic profiling) of different macrophage subsets is a powerful tool to understand the response of the human immune system to different stimuli. Here, the recently developed 3D OrbiSIMS instrument is applied to yield useful insight into the metabolome from individual cells after in vitro differentiation of macrophages into naïve, M1, and M2 phenotypes using different cytokines. This analysis strategy not only requires more than 6 orders of magnitude less sample than traditional mass spectrometry approaches but also allows the study of cell-to-cell variance. Characteristic metabolites in macrophage subsets are identified using a targeted lipid and data-driven multivariate approach highlighting amino acids and other small molecules. The diamino acids alanylasparagine and lipid sphingomyelin SM(d18/16:0) are uniquely found in M1 macrophages, while pyridine and pyrimidine are observed at increased intensity in M2 macrophages, findings which link to known biological pathways. The first demonstration of this capability illustrates the great potential of direct cell analysis for in situ metabolite profiling with the 3D OrbiSIMS to probe functional phenotype at the single-cell level using molecular signatures and to understand the response of the human body to implanted devices and immune diseases.</description><subject>Amino acids</subject><subject>Analytical chemistry</subject><subject>Cell differentiation</subject><subject>Chemistry</subject><subject>Cytokines</subject><subject>Immune system</subject><subject>Immunological diseases</subject><subject>Inflammation</subject><subject>Lipids</subject><subject>Macrophages</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Multivariate analysis</subject><subject>Phenotypes</subject><subject>Sphingomyelin</subject><issn>0003-2700</issn><issn>1520-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kUFvEzEQhS0EoqHwDzhY4sJlw9hee70ckFAKbaVGrRR6RJa9GWddbdbB3oD673GUUAkOnEb2-97TaB4hbxnMGXD2wXZ5bkc7dD1u57wDJhr5jMyY5FAprflzMgMAUfEG4Iy8yvkBgDFg6iU5E7JhQjftjHxfhXEzYLXAYaBLnKyLQ-joXYo-DEWi0dOl7VLc9XaDmd7nw6e4oLfJhdX1cvWRLmJKONgpxDHTX2Hq6V2PY5wed_iavPB2yPjmNM_J_dcv3xZX1c3t5fXi801la1lPldOKOfCILRdCaLS6PLwHIaVr0XLvrVNS1kIxte7ANmVo5i1zao2cO3FOPh1zd3u3xXWH45TsYHYpbG16NNEG87cyht5s4k_TcgUNhxLw_hSQ4o895slsQ-7KTeyIcZ8NV42uuS4LFPTdP-hD3KdSxIFqmWQtQF2o-kiV0-Wc0D8tw8Ac-jOlP_OnP3Pqr9jgaDuoT7n_tfwGKxehLg</recordid><startdate>20220705</startdate><enddate>20220705</enddate><creator>Suvannapruk, Waraporn</creator><creator>Edney, Max K.</creator><creator>Kim, Dong-Hyun</creator><creator>Scurr, David J.</creator><creator>Ghaemmaghami, Amir M.</creator><creator>Alexander, Morgan R.</creator><general>American Chemical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7U5</scope><scope>7U7</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3160-8759</orcidid><orcidid>https://orcid.org/0000-0003-3438-5060</orcidid><orcidid>https://orcid.org/0000-0003-0859-3886</orcidid><orcidid>https://orcid.org/0000-0002-3689-2130</orcidid><orcidid>https://orcid.org/0000-0001-9138-9418</orcidid><orcidid>https://orcid.org/0000-0001-5182-493X</orcidid></search><sort><creationdate>20220705</creationdate><title>Single-Cell Metabolic Profiling of Macrophages Using 3D OrbiSIMS: Correlations with Phenotype</title><author>Suvannapruk, Waraporn ; Edney, Max K. ; Kim, Dong-Hyun ; Scurr, David J. ; Ghaemmaghami, Amir M. ; Alexander, Morgan R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a454t-b861b0fee923338ea80feff0355b9ea2ffab65543616dc0a716d81fa1b6de22b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amino acids</topic><topic>Analytical chemistry</topic><topic>Cell differentiation</topic><topic>Chemistry</topic><topic>Cytokines</topic><topic>Immune system</topic><topic>Immunological diseases</topic><topic>Inflammation</topic><topic>Lipids</topic><topic>Macrophages</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Multivariate analysis</topic><topic>Phenotypes</topic><topic>Sphingomyelin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suvannapruk, Waraporn</creatorcontrib><creatorcontrib>Edney, Max K.</creatorcontrib><creatorcontrib>Kim, Dong-Hyun</creatorcontrib><creatorcontrib>Scurr, David J.</creatorcontrib><creatorcontrib>Ghaemmaghami, Amir M.</creatorcontrib><creatorcontrib>Alexander, Morgan R.</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Analytical chemistry (Washington)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Suvannapruk, Waraporn</au><au>Edney, Max K.</au><au>Kim, Dong-Hyun</au><au>Scurr, David J.</au><au>Ghaemmaghami, Amir M.</au><au>Alexander, Morgan R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Single-Cell Metabolic Profiling of Macrophages Using 3D OrbiSIMS: Correlations with Phenotype</atitle><jtitle>Analytical chemistry (Washington)</jtitle><addtitle>Anal. Chem</addtitle><date>2022-07-05</date><risdate>2022</risdate><volume>94</volume><issue>26</issue><spage>9389</spage><epage>9398</epage><pages>9389-9398</pages><issn>0003-2700</issn><eissn>1520-6882</eissn><abstract>Macrophages are important immune cells that respond to environmental cues acquiring a range of activation statuses represented by pro-inflammatory (M1) and anti-inflammatory (M2) phenotypes at each end of their spectrum. Characterizing the metabolic signature (metabolic profiling) of different macrophage subsets is a powerful tool to understand the response of the human immune system to different stimuli. Here, the recently developed 3D OrbiSIMS instrument is applied to yield useful insight into the metabolome from individual cells after in vitro differentiation of macrophages into naïve, M1, and M2 phenotypes using different cytokines. This analysis strategy not only requires more than 6 orders of magnitude less sample than traditional mass spectrometry approaches but also allows the study of cell-to-cell variance. Characteristic metabolites in macrophage subsets are identified using a targeted lipid and data-driven multivariate approach highlighting amino acids and other small molecules. The diamino acids alanylasparagine and lipid sphingomyelin SM(d18/16:0) are uniquely found in M1 macrophages, while pyridine and pyrimidine are observed at increased intensity in M2 macrophages, findings which link to known biological pathways. The first demonstration of this capability illustrates the great potential of direct cell analysis for in situ metabolite profiling with the 3D OrbiSIMS to probe functional phenotype at the single-cell level using molecular signatures and to understand the response of the human body to implanted devices and immune diseases.</abstract><cop>Washington</cop><pub>American Chemical Society</pub><pmid>35713879</pmid><doi>10.1021/acs.analchem.2c01375</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3160-8759</orcidid><orcidid>https://orcid.org/0000-0003-3438-5060</orcidid><orcidid>https://orcid.org/0000-0003-0859-3886</orcidid><orcidid>https://orcid.org/0000-0002-3689-2130</orcidid><orcidid>https://orcid.org/0000-0001-9138-9418</orcidid><orcidid>https://orcid.org/0000-0001-5182-493X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2700 |
ispartof | Analytical chemistry (Washington), 2022-07, Vol.94 (26), p.9389-9398 |
issn | 0003-2700 1520-6882 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9260720 |
source | ACS Publications |
subjects | Amino acids Analytical chemistry Cell differentiation Chemistry Cytokines Immune system Immunological diseases Inflammation Lipids Macrophages Mass spectrometry Mass spectroscopy Metabolism Metabolites Multivariate analysis Phenotypes Sphingomyelin |
title | Single-Cell Metabolic Profiling of Macrophages Using 3D OrbiSIMS: Correlations with Phenotype |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T11%3A33%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Single-Cell%20Metabolic%20Profiling%20of%20Macrophages%20Using%203D%20OrbiSIMS:%20Correlations%20with%20Phenotype&rft.jtitle=Analytical%20chemistry%20(Washington)&rft.au=Suvannapruk,%20Waraporn&rft.date=2022-07-05&rft.volume=94&rft.issue=26&rft.spage=9389&rft.epage=9398&rft.pages=9389-9398&rft.issn=0003-2700&rft.eissn=1520-6882&rft_id=info:doi/10.1021/acs.analchem.2c01375&rft_dat=%3Cproquest_pubme%3E2691519004%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2691519004&rft_id=info:pmid/35713879&rfr_iscdi=true |