Engineering of A3 adenosine and P2Y nucleotide receptors and their ligands

Modification of the ribose moiety of nucleotides and nucleosides has provided new insights into structural and conformational requirements for ligands at P2Y nucleotide receptors and at adenosine receptors (ARs). Methanocarba derivatives (containing a rigid bicyclic ring system in place of ribose) o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Drug development research 2003-04, Vol.58 (4), p.330-339
Hauptverfasser: Jacobson, Kenneth A., Kim, Hak Sung, Ravi, Gnana, Kim, Soo-Kyung, Lee, Kyeong, Chen, Aishe, Chen, Wangzhong, Kim, Seong Gon, Barak, Dov, Liang, Bruce T., Gao, Zhan-Guo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 339
container_issue 4
container_start_page 330
container_title Drug development research
container_volume 58
creator Jacobson, Kenneth A.
Kim, Hak Sung
Ravi, Gnana
Kim, Soo-Kyung
Lee, Kyeong
Chen, Aishe
Chen, Wangzhong
Kim, Seong Gon
Barak, Dov
Liang, Bruce T.
Gao, Zhan-Guo
description Modification of the ribose moiety of nucleotides and nucleosides has provided new insights into structural and conformational requirements for ligands at P2Y nucleotide receptors and at adenosine receptors (ARs). Methanocarba derivatives (containing a rigid bicyclic ring system in place of ribose) of adenosine, ATP, ADP, UTP, UDP, and other receptor agonist analogs were synthesized. Biological evaluation led to the conclusion that in general the Northern (N)‐conformation was favored over the Southern (S)‐conformation of the pseudoribose moiety at A1 and A3 ARs and at P2Y1, P2Y2, P2Y4, or P2Y11 receptors, but not P2Y6 receptors. At the hA3 AR a new full agonist, MRS1898, the (N)‐methanocarba equivalent of Cl‐IB‐MECA (2‐chloro‐N6‐(3‐iodobenzyl)‐5'‐N‐methylcarbamoyladenosine), had a Ki value of 1.9 nM in binding to the hA3 AR expressed in CHO cells. Functional assays confirmed the selectivity of MRS1898, although Cl‐IB‐MECA was even more functionally selective for human A3 vs. hA1 and hA2A ARs. Thirty µM MRS1898 did not induce apoptosis in HL‐60 cells, suggesting that some of the proapoptotic effects of Cl‐IB‐MECA may be nonreceptor‐mediated. Manipulation of the sequence of A3 ARs through site‐directed mutagenesis has led to pharmacologically unique constructs: constitutively active receptors and “neoceptors.” Such engineered receptors may later prove to have potential for cardioprotection through gene transfer. Effects of single amino acid replacement were interpreted using a rhodopsin‐based model of ligand‐A3 receptor interactions, leading to the proposal that a movement of the conserved W243 in TM6 may be involved in AR activation. Drug Dev. Res. 58:330–339, 2003. © 2003 Wiley‐Liss, Inc.
doi_str_mv 10.1002/ddr.10168
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9258468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20379651</sourcerecordid><originalsourceid>FETCH-LOGICAL-i3308-6031977cc5d4385e6a5a8db902628f759a72885ec60fe55e69e86635ee7d5ad73</originalsourceid><addsrcrecordid>eNp9kUlPHDEQha0oCIblkH_Ql0S5NHhpb5dIaNiFEsSiSU6WsasHJz3uid0D4d9jZkZEueTkcr2vXll-CH0geJ9gTA-8T6UgQr1DI4K1qinV-j0aYSpp3TBNttB2zj8xJqRRahNtMS611lKO0MVxnIYIkEKcVn1bHbLKeoh9Ls3KRl9d0R9VXLgO-iF4qBI4mA99yktxeICQqi5MyyXvoo3Wdhn21ucOujs5vh2f1ZffTs_Hh5d1YAyrWmBGymrnuG-Y4iAst8rfa0wFVa3k2kqqSt8J3AIvugYlBOMA0nPrJdtBX1a-88X9DLyDOCTbmXkKM5ueTW-D-VeJ4cFM-0ejKVeNUMXg89og9b8XkAczC9lB19kI_SIbKpSUlDWMFfTT_1HMpBacFPDjGrTZ2a5NNrqQ3x5V_l1rgmnhDlbcU-jg-a-OzWuSpiRplkmao6PrZVEm6tVEyAP8eZuw6ZcRkkluJl9PzffJ5OpGjrmh7AVOCp-J</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20379651</pqid></control><display><type>article</type><title>Engineering of A3 adenosine and P2Y nucleotide receptors and their ligands</title><source>Wiley Online Library Journals</source><creator>Jacobson, Kenneth A. ; Kim, Hak Sung ; Ravi, Gnana ; Kim, Soo-Kyung ; Lee, Kyeong ; Chen, Aishe ; Chen, Wangzhong ; Kim, Seong Gon ; Barak, Dov ; Liang, Bruce T. ; Gao, Zhan-Guo</creator><creatorcontrib>Jacobson, Kenneth A. ; Kim, Hak Sung ; Ravi, Gnana ; Kim, Soo-Kyung ; Lee, Kyeong ; Chen, Aishe ; Chen, Wangzhong ; Kim, Seong Gon ; Barak, Dov ; Liang, Bruce T. ; Gao, Zhan-Guo</creatorcontrib><description>Modification of the ribose moiety of nucleotides and nucleosides has provided new insights into structural and conformational requirements for ligands at P2Y nucleotide receptors and at adenosine receptors (ARs). Methanocarba derivatives (containing a rigid bicyclic ring system in place of ribose) of adenosine, ATP, ADP, UTP, UDP, and other receptor agonist analogs were synthesized. Biological evaluation led to the conclusion that in general the Northern (N)‐conformation was favored over the Southern (S)‐conformation of the pseudoribose moiety at A1 and A3 ARs and at P2Y1, P2Y2, P2Y4, or P2Y11 receptors, but not P2Y6 receptors. At the hA3 AR a new full agonist, MRS1898, the (N)‐methanocarba equivalent of Cl‐IB‐MECA (2‐chloro‐N6‐(3‐iodobenzyl)‐5'‐N‐methylcarbamoyladenosine), had a Ki value of 1.9 nM in binding to the hA3 AR expressed in CHO cells. Functional assays confirmed the selectivity of MRS1898, although Cl‐IB‐MECA was even more functionally selective for human A3 vs. hA1 and hA2A ARs. Thirty µM MRS1898 did not induce apoptosis in HL‐60 cells, suggesting that some of the proapoptotic effects of Cl‐IB‐MECA may be nonreceptor‐mediated. Manipulation of the sequence of A3 ARs through site‐directed mutagenesis has led to pharmacologically unique constructs: constitutively active receptors and “neoceptors.” Such engineered receptors may later prove to have potential for cardioprotection through gene transfer. Effects of single amino acid replacement were interpreted using a rhodopsin‐based model of ligand‐A3 receptor interactions, leading to the proposal that a movement of the conserved W243 in TM6 may be involved in AR activation. Drug Dev. Res. 58:330–339, 2003. © 2003 Wiley‐Liss, Inc.</description><identifier>ISSN: 0272-4391</identifier><identifier>EISSN: 1098-2299</identifier><identifier>DOI: 10.1002/ddr.10168</identifier><identifier>PMID: 35799977</identifier><identifier>CODEN: DDREDK</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>ARs ; Biological and medical sciences ; G-protein-coupled receptors ; Medical sciences ; Neuropharmacology ; Neurotransmitters. Neurotransmission. Receptors ; nucleosides ; nucleotides ; Peptidergic system (neuropeptide, opioid peptide, opiates...). Adenosinergic and purinergic systems ; Pharmacology. Drug treatments ; purines ; structure-activity relationships</subject><ispartof>Drug development research, 2003-04, Vol.58 (4), p.330-339</ispartof><rights>2003 Wiley‐Liss, Inc.</rights><rights>2003 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fddr.10168$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fddr.10168$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,309,310,314,780,784,789,790,885,1417,23930,23931,25140,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=14899102$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Jacobson, Kenneth A.</creatorcontrib><creatorcontrib>Kim, Hak Sung</creatorcontrib><creatorcontrib>Ravi, Gnana</creatorcontrib><creatorcontrib>Kim, Soo-Kyung</creatorcontrib><creatorcontrib>Lee, Kyeong</creatorcontrib><creatorcontrib>Chen, Aishe</creatorcontrib><creatorcontrib>Chen, Wangzhong</creatorcontrib><creatorcontrib>Kim, Seong Gon</creatorcontrib><creatorcontrib>Barak, Dov</creatorcontrib><creatorcontrib>Liang, Bruce T.</creatorcontrib><creatorcontrib>Gao, Zhan-Guo</creatorcontrib><title>Engineering of A3 adenosine and P2Y nucleotide receptors and their ligands</title><title>Drug development research</title><addtitle>Drug Dev. Res</addtitle><description>Modification of the ribose moiety of nucleotides and nucleosides has provided new insights into structural and conformational requirements for ligands at P2Y nucleotide receptors and at adenosine receptors (ARs). Methanocarba derivatives (containing a rigid bicyclic ring system in place of ribose) of adenosine, ATP, ADP, UTP, UDP, and other receptor agonist analogs were synthesized. Biological evaluation led to the conclusion that in general the Northern (N)‐conformation was favored over the Southern (S)‐conformation of the pseudoribose moiety at A1 and A3 ARs and at P2Y1, P2Y2, P2Y4, or P2Y11 receptors, but not P2Y6 receptors. At the hA3 AR a new full agonist, MRS1898, the (N)‐methanocarba equivalent of Cl‐IB‐MECA (2‐chloro‐N6‐(3‐iodobenzyl)‐5'‐N‐methylcarbamoyladenosine), had a Ki value of 1.9 nM in binding to the hA3 AR expressed in CHO cells. Functional assays confirmed the selectivity of MRS1898, although Cl‐IB‐MECA was even more functionally selective for human A3 vs. hA1 and hA2A ARs. Thirty µM MRS1898 did not induce apoptosis in HL‐60 cells, suggesting that some of the proapoptotic effects of Cl‐IB‐MECA may be nonreceptor‐mediated. Manipulation of the sequence of A3 ARs through site‐directed mutagenesis has led to pharmacologically unique constructs: constitutively active receptors and “neoceptors.” Such engineered receptors may later prove to have potential for cardioprotection through gene transfer. Effects of single amino acid replacement were interpreted using a rhodopsin‐based model of ligand‐A3 receptor interactions, leading to the proposal that a movement of the conserved W243 in TM6 may be involved in AR activation. Drug Dev. Res. 58:330–339, 2003. © 2003 Wiley‐Liss, Inc.</description><subject>ARs</subject><subject>Biological and medical sciences</subject><subject>G-protein-coupled receptors</subject><subject>Medical sciences</subject><subject>Neuropharmacology</subject><subject>Neurotransmitters. Neurotransmission. Receptors</subject><subject>nucleosides</subject><subject>nucleotides</subject><subject>Peptidergic system (neuropeptide, opioid peptide, opiates...). Adenosinergic and purinergic systems</subject><subject>Pharmacology. Drug treatments</subject><subject>purines</subject><subject>structure-activity relationships</subject><issn>0272-4391</issn><issn>1098-2299</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2003</creationdate><recordtype>article</recordtype><recordid>eNp9kUlPHDEQha0oCIblkH_Ql0S5NHhpb5dIaNiFEsSiSU6WsasHJz3uid0D4d9jZkZEueTkcr2vXll-CH0geJ9gTA-8T6UgQr1DI4K1qinV-j0aYSpp3TBNttB2zj8xJqRRahNtMS611lKO0MVxnIYIkEKcVn1bHbLKeoh9Ls3KRl9d0R9VXLgO-iF4qBI4mA99yktxeICQqi5MyyXvoo3Wdhn21ucOujs5vh2f1ZffTs_Hh5d1YAyrWmBGymrnuG-Y4iAst8rfa0wFVa3k2kqqSt8J3AIvugYlBOMA0nPrJdtBX1a-88X9DLyDOCTbmXkKM5ueTW-D-VeJ4cFM-0ejKVeNUMXg89og9b8XkAczC9lB19kI_SIbKpSUlDWMFfTT_1HMpBacFPDjGrTZ2a5NNrqQ3x5V_l1rgmnhDlbcU-jg-a-OzWuSpiRplkmao6PrZVEm6tVEyAP8eZuw6ZcRkkluJl9PzffJ5OpGjrmh7AVOCp-J</recordid><startdate>200304</startdate><enddate>200304</enddate><creator>Jacobson, Kenneth A.</creator><creator>Kim, Hak Sung</creator><creator>Ravi, Gnana</creator><creator>Kim, Soo-Kyung</creator><creator>Lee, Kyeong</creator><creator>Chen, Aishe</creator><creator>Chen, Wangzhong</creator><creator>Kim, Seong Gon</creator><creator>Barak, Dov</creator><creator>Liang, Bruce T.</creator><creator>Gao, Zhan-Guo</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley-Liss</general><scope>BSCLL</scope><scope>IQODW</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200304</creationdate><title>Engineering of A3 adenosine and P2Y nucleotide receptors and their ligands</title><author>Jacobson, Kenneth A. ; Kim, Hak Sung ; Ravi, Gnana ; Kim, Soo-Kyung ; Lee, Kyeong ; Chen, Aishe ; Chen, Wangzhong ; Kim, Seong Gon ; Barak, Dov ; Liang, Bruce T. ; Gao, Zhan-Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i3308-6031977cc5d4385e6a5a8db902628f759a72885ec60fe55e69e86635ee7d5ad73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2003</creationdate><topic>ARs</topic><topic>Biological and medical sciences</topic><topic>G-protein-coupled receptors</topic><topic>Medical sciences</topic><topic>Neuropharmacology</topic><topic>Neurotransmitters. Neurotransmission. Receptors</topic><topic>nucleosides</topic><topic>nucleotides</topic><topic>Peptidergic system (neuropeptide, opioid peptide, opiates...). Adenosinergic and purinergic systems</topic><topic>Pharmacology. Drug treatments</topic><topic>purines</topic><topic>structure-activity relationships</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jacobson, Kenneth A.</creatorcontrib><creatorcontrib>Kim, Hak Sung</creatorcontrib><creatorcontrib>Ravi, Gnana</creatorcontrib><creatorcontrib>Kim, Soo-Kyung</creatorcontrib><creatorcontrib>Lee, Kyeong</creatorcontrib><creatorcontrib>Chen, Aishe</creatorcontrib><creatorcontrib>Chen, Wangzhong</creatorcontrib><creatorcontrib>Kim, Seong Gon</creatorcontrib><creatorcontrib>Barak, Dov</creatorcontrib><creatorcontrib>Liang, Bruce T.</creatorcontrib><creatorcontrib>Gao, Zhan-Guo</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Drug development research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jacobson, Kenneth A.</au><au>Kim, Hak Sung</au><au>Ravi, Gnana</au><au>Kim, Soo-Kyung</au><au>Lee, Kyeong</au><au>Chen, Aishe</au><au>Chen, Wangzhong</au><au>Kim, Seong Gon</au><au>Barak, Dov</au><au>Liang, Bruce T.</au><au>Gao, Zhan-Guo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering of A3 adenosine and P2Y nucleotide receptors and their ligands</atitle><jtitle>Drug development research</jtitle><addtitle>Drug Dev. Res</addtitle><date>2003-04</date><risdate>2003</risdate><volume>58</volume><issue>4</issue><spage>330</spage><epage>339</epage><pages>330-339</pages><issn>0272-4391</issn><eissn>1098-2299</eissn><coden>DDREDK</coden><abstract>Modification of the ribose moiety of nucleotides and nucleosides has provided new insights into structural and conformational requirements for ligands at P2Y nucleotide receptors and at adenosine receptors (ARs). Methanocarba derivatives (containing a rigid bicyclic ring system in place of ribose) of adenosine, ATP, ADP, UTP, UDP, and other receptor agonist analogs were synthesized. Biological evaluation led to the conclusion that in general the Northern (N)‐conformation was favored over the Southern (S)‐conformation of the pseudoribose moiety at A1 and A3 ARs and at P2Y1, P2Y2, P2Y4, or P2Y11 receptors, but not P2Y6 receptors. At the hA3 AR a new full agonist, MRS1898, the (N)‐methanocarba equivalent of Cl‐IB‐MECA (2‐chloro‐N6‐(3‐iodobenzyl)‐5'‐N‐methylcarbamoyladenosine), had a Ki value of 1.9 nM in binding to the hA3 AR expressed in CHO cells. Functional assays confirmed the selectivity of MRS1898, although Cl‐IB‐MECA was even more functionally selective for human A3 vs. hA1 and hA2A ARs. Thirty µM MRS1898 did not induce apoptosis in HL‐60 cells, suggesting that some of the proapoptotic effects of Cl‐IB‐MECA may be nonreceptor‐mediated. Manipulation of the sequence of A3 ARs through site‐directed mutagenesis has led to pharmacologically unique constructs: constitutively active receptors and “neoceptors.” Such engineered receptors may later prove to have potential for cardioprotection through gene transfer. Effects of single amino acid replacement were interpreted using a rhodopsin‐based model of ligand‐A3 receptor interactions, leading to the proposal that a movement of the conserved W243 in TM6 may be involved in AR activation. Drug Dev. Res. 58:330–339, 2003. © 2003 Wiley‐Liss, Inc.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>35799977</pmid><doi>10.1002/ddr.10168</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0272-4391
ispartof Drug development research, 2003-04, Vol.58 (4), p.330-339
issn 0272-4391
1098-2299
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9258468
source Wiley Online Library Journals
subjects ARs
Biological and medical sciences
G-protein-coupled receptors
Medical sciences
Neuropharmacology
Neurotransmitters. Neurotransmission. Receptors
nucleosides
nucleotides
Peptidergic system (neuropeptide, opioid peptide, opiates...). Adenosinergic and purinergic systems
Pharmacology. Drug treatments
purines
structure-activity relationships
title Engineering of A3 adenosine and P2Y nucleotide receptors and their ligands
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T17%3A12%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20of%20A3%20adenosine%20and%20P2Y%20nucleotide%20receptors%20and%20their%20ligands&rft.jtitle=Drug%20development%20research&rft.au=Jacobson,%20Kenneth%20A.&rft.date=2003-04&rft.volume=58&rft.issue=4&rft.spage=330&rft.epage=339&rft.pages=330-339&rft.issn=0272-4391&rft.eissn=1098-2299&rft.coden=DDREDK&rft_id=info:doi/10.1002/ddr.10168&rft_dat=%3Cproquest_pubme%3E20379651%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20379651&rft_id=info:pmid/35799977&rfr_iscdi=true