Analysis of the Intelligent Tourism Route Planning Scheme Based on the Cluster Analysis Algorithm
In view of the problems of the traditional cluster analysis algorithm such as strong dependence on the initial cluster center, the traditional k-means cluster analysis algorithm is improved and the experiment proves that the improved algorithm has a better clustering effect; in view of the problems...
Gespeichert in:
Veröffentlicht in: | Computational intelligence and neuroscience 2022-06, Vol.2022, p.1-10 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 10 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | Computational intelligence and neuroscience |
container_volume | 2022 |
creator | Lou, Na |
description | In view of the problems of the traditional cluster analysis algorithm such as strong dependence on the initial cluster center, the traditional k-means cluster analysis algorithm is improved and the experiment proves that the improved algorithm has a better clustering effect; in view of the problems of the traditional tourism route planning, the improved k-means cluster analysis algorithm is applied to the intelligent tourism route planning scheme design and an intelligent tourism planning scheme based on the cluster analysis algorithm is proposed; the tourists’ preference metric is fully considered, and the experimental results show that the scheme has certain reasonableness and reference value. |
doi_str_mv | 10.1155/2022/3310676 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9256382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A709807275</galeid><sourcerecordid>A709807275</sourcerecordid><originalsourceid>FETCH-LOGICAL-c453t-ab89f4dd8ed2dcc0ac35024c22b0ff02cd2e59c033ef051d437e5c87788db43</originalsourceid><addsrcrecordid>eNp9kUuLFDEUhYMozti68wcE3AjaTh6VSmojtI2PgQHFmX1IJ7eqMqSSMakamX9v2m5adOEqF_Ll3JNzEHpJyTtKhbhghLELzilpZfsIndNWybVgkj8-za04Q89KuSVESEHYU3TGhSKk7dQ5MptowkPxBacezyPgyzhDCH6AOOObtGRfJvw9LTPgb8HE6OOAr-0IE-APpoDDKf5-tg1LmSHjk9wmDCn7eZyeoye9CQVeHM8Vuv708Wb7ZX319fPldnO1to3g89rsVNc3zilwzFlLjOXVa2MZ25G-J8w6BqKzhHPoiaCu4RKEVVIq5XYNX6H3B9W7ZTeBs9V-NkHfZT-Z_KCT8frvm-hHPaR73THRcsWqwOujQE4_FiiznnyxNQoTIS1Fs5qlZIxQWtFX_6C3Naj68QMleNsq_ocaTADtY5_qXrsX1RtJOkUkq-gKvT1QNqdSMvQny5Tofb96368-9lvxNwd89NGZn_7_9C9UvqM5</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2687536683</pqid></control><display><type>article</type><title>Analysis of the Intelligent Tourism Route Planning Scheme Based on the Cluster Analysis Algorithm</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>Wiley-Blackwell Open Access Titles</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lou, Na</creator><contributor>Gu, Yang ; Yang Gu</contributor><creatorcontrib>Lou, Na ; Gu, Yang ; Yang Gu</creatorcontrib><description>In view of the problems of the traditional cluster analysis algorithm such as strong dependence on the initial cluster center, the traditional k-means cluster analysis algorithm is improved and the experiment proves that the improved algorithm has a better clustering effect; in view of the problems of the traditional tourism route planning, the improved k-means cluster analysis algorithm is applied to the intelligent tourism route planning scheme design and an intelligent tourism planning scheme based on the cluster analysis algorithm is proposed; the tourists’ preference metric is fully considered, and the experimental results show that the scheme has certain reasonableness and reference value.</description><identifier>ISSN: 1687-5265</identifier><identifier>EISSN: 1687-5273</identifier><identifier>DOI: 10.1155/2022/3310676</identifier><identifier>PMID: 35800698</identifier><language>eng</language><publisher>New York: Hindawi</publisher><subject>Algorithms ; Artificial intelligence ; Cluster analysis ; Clustering ; Cultural heritage ; Decision making ; Forecasts and trends ; Planning ; R&D ; Research & development ; Route planning ; Shopping ; Tourism ; Tourist attractions ; Travel industry</subject><ispartof>Computational intelligence and neuroscience, 2022-06, Vol.2022, p.1-10</ispartof><rights>Copyright © 2022 Na Lou.</rights><rights>COPYRIGHT 2022 John Wiley & Sons, Inc.</rights><rights>Copyright © 2022 Na Lou. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><rights>Copyright © 2022 Na Lou. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c453t-ab89f4dd8ed2dcc0ac35024c22b0ff02cd2e59c033ef051d437e5c87788db43</citedby><cites>FETCH-LOGICAL-c453t-ab89f4dd8ed2dcc0ac35024c22b0ff02cd2e59c033ef051d437e5c87788db43</cites><orcidid>0000-0001-5329-3159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256382/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9256382/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><contributor>Gu, Yang</contributor><contributor>Yang Gu</contributor><creatorcontrib>Lou, Na</creatorcontrib><title>Analysis of the Intelligent Tourism Route Planning Scheme Based on the Cluster Analysis Algorithm</title><title>Computational intelligence and neuroscience</title><description>In view of the problems of the traditional cluster analysis algorithm such as strong dependence on the initial cluster center, the traditional k-means cluster analysis algorithm is improved and the experiment proves that the improved algorithm has a better clustering effect; in view of the problems of the traditional tourism route planning, the improved k-means cluster analysis algorithm is applied to the intelligent tourism route planning scheme design and an intelligent tourism planning scheme based on the cluster analysis algorithm is proposed; the tourists’ preference metric is fully considered, and the experimental results show that the scheme has certain reasonableness and reference value.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cluster analysis</subject><subject>Clustering</subject><subject>Cultural heritage</subject><subject>Decision making</subject><subject>Forecasts and trends</subject><subject>Planning</subject><subject>R&D</subject><subject>Research & development</subject><subject>Route planning</subject><subject>Shopping</subject><subject>Tourism</subject><subject>Tourist attractions</subject><subject>Travel industry</subject><issn>1687-5265</issn><issn>1687-5273</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kUuLFDEUhYMozti68wcE3AjaTh6VSmojtI2PgQHFmX1IJ7eqMqSSMakamX9v2m5adOEqF_Ll3JNzEHpJyTtKhbhghLELzilpZfsIndNWybVgkj8-za04Q89KuSVESEHYU3TGhSKk7dQ5MptowkPxBacezyPgyzhDCH6AOOObtGRfJvw9LTPgb8HE6OOAr-0IE-APpoDDKf5-tg1LmSHjk9wmDCn7eZyeoye9CQVeHM8Vuv708Wb7ZX319fPldnO1to3g89rsVNc3zilwzFlLjOXVa2MZ25G-J8w6BqKzhHPoiaCu4RKEVVIq5XYNX6H3B9W7ZTeBs9V-NkHfZT-Z_KCT8frvm-hHPaR73THRcsWqwOujQE4_FiiznnyxNQoTIS1Fs5qlZIxQWtFX_6C3Naj68QMleNsq_ocaTADtY5_qXrsX1RtJOkUkq-gKvT1QNqdSMvQny5Tofb96368-9lvxNwd89NGZn_7_9C9UvqM5</recordid><startdate>20220628</startdate><enddate>20220628</enddate><creator>Lou, Na</creator><general>Hindawi</general><general>John Wiley & Sons, Inc</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AL</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>CWDGH</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-5329-3159</orcidid></search><sort><creationdate>20220628</creationdate><title>Analysis of the Intelligent Tourism Route Planning Scheme Based on the Cluster Analysis Algorithm</title><author>Lou, Na</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c453t-ab89f4dd8ed2dcc0ac35024c22b0ff02cd2e59c033ef051d437e5c87788db43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cluster analysis</topic><topic>Clustering</topic><topic>Cultural heritage</topic><topic>Decision making</topic><topic>Forecasts and trends</topic><topic>Planning</topic><topic>R&D</topic><topic>Research & development</topic><topic>Route planning</topic><topic>Shopping</topic><topic>Tourism</topic><topic>Tourist attractions</topic><topic>Travel industry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lou, Na</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Middle East & Africa Database</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Computational intelligence and neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lou, Na</au><au>Gu, Yang</au><au>Yang Gu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of the Intelligent Tourism Route Planning Scheme Based on the Cluster Analysis Algorithm</atitle><jtitle>Computational intelligence and neuroscience</jtitle><date>2022-06-28</date><risdate>2022</risdate><volume>2022</volume><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1687-5265</issn><eissn>1687-5273</eissn><abstract>In view of the problems of the traditional cluster analysis algorithm such as strong dependence on the initial cluster center, the traditional k-means cluster analysis algorithm is improved and the experiment proves that the improved algorithm has a better clustering effect; in view of the problems of the traditional tourism route planning, the improved k-means cluster analysis algorithm is applied to the intelligent tourism route planning scheme design and an intelligent tourism planning scheme based on the cluster analysis algorithm is proposed; the tourists’ preference metric is fully considered, and the experimental results show that the scheme has certain reasonableness and reference value.</abstract><cop>New York</cop><pub>Hindawi</pub><pmid>35800698</pmid><doi>10.1155/2022/3310676</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5329-3159</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-5265 |
ispartof | Computational intelligence and neuroscience, 2022-06, Vol.2022, p.1-10 |
issn | 1687-5265 1687-5273 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9256382 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; Wiley-Blackwell Open Access Titles; PubMed Central; Alma/SFX Local Collection |
subjects | Algorithms Artificial intelligence Cluster analysis Clustering Cultural heritage Decision making Forecasts and trends Planning R&D Research & development Route planning Shopping Tourism Tourist attractions Travel industry |
title | Analysis of the Intelligent Tourism Route Planning Scheme Based on the Cluster Analysis Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T08%3A21%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20the%20Intelligent%20Tourism%20Route%20Planning%20Scheme%20Based%20on%20the%20Cluster%20Analysis%20Algorithm&rft.jtitle=Computational%20intelligence%20and%20neuroscience&rft.au=Lou,%20Na&rft.date=2022-06-28&rft.volume=2022&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1687-5265&rft.eissn=1687-5273&rft_id=info:doi/10.1155/2022/3310676&rft_dat=%3Cgale_pubme%3EA709807275%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2687536683&rft_id=info:pmid/35800698&rft_galeid=A709807275&rfr_iscdi=true |