Radiomics Analysis on Noncontrast CT for Distinguishing Hepatic Hemangioma (HH) and Hepatocellular Carcinoma (HCC)

Background. To form a radiomic model on the basis of noncontrast computed tomography (CT) to distinguish hepatic hemangioma (HH) and hepatocellular carcinoma (HCC). Methods. In this retrospective study, a total of 110 patients were reviewed, including 72 HCC and 38 HH. We accomplished feature select...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Contrast media and molecular imaging 2022, Vol.2022 (1), p.7693631-7693631
Hauptverfasser: Hu, Shuyi, Lyu, Xiajie, Li, Weifeng, Cui, Xiaohan, Liu, Qiaoyu, Xu, Xiaoliang, Wang, Jincheng, Chen, Lin, Zhang, Xudong, Yin, Yin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7693631
container_issue 1
container_start_page 7693631
container_title Contrast media and molecular imaging
container_volume 2022
creator Hu, Shuyi
Lyu, Xiajie
Li, Weifeng
Cui, Xiaohan
Liu, Qiaoyu
Xu, Xiaoliang
Wang, Jincheng
Chen, Lin
Zhang, Xudong
Yin, Yin
description Background. To form a radiomic model on the basis of noncontrast computed tomography (CT) to distinguish hepatic hemangioma (HH) and hepatocellular carcinoma (HCC). Methods. In this retrospective study, a total of 110 patients were reviewed, including 72 HCC and 38 HH. We accomplished feature selection with the least absolute shrinkage and operator (LASSO) and built a radiomics signature. Another improved model (radiomics index) was established using forward conditional multivariate logistic regression. Both models were tested in an internal validation group (38 HCC and 21 HH). Results. The radiomic signature we built including 5 radiomic features demonstrated significant differences between the hepatic HH and HCC groups P
doi_str_mv 10.1155/2022/7693631
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9252683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2689669718</sourcerecordid><originalsourceid>FETCH-LOGICAL-c397t-83db738dd2a36b8df48f65e792cbf1950ddd51a462e9aedb55e7bf65ab8e5a443</originalsourceid><addsrcrecordid>eNp9kV9L5DAUxcOysqPjvvkB8qiso0nTtM3LgtQ_I4iCzD6H2yQdI20ym7Qr8-3N0GFgX3w6l5wfJ9x7EDqj5IpSzq8zkmXXZSFYweg3dJye-CJntPx-mImYoZMY3wnJcybYDzRjvGKMVOQYhVfQ1vdWRXzjoNtGG7F3-Nk75d0QIA64XuHWB3xr42DderTxLQlemg0MViXtwa1TBODz5fICg9OT55XpurGDgGsIyrqJqOuLU3TUQhfNz73O0Z_7u1W9XDy9PDzWN08LxUQ5LCqmm5JVWmfAiqbSbV61BTelyFTTUsGJ1ppTyIvMCDC64clrEgFNZTikTefo95S7GZveaGV2-3RyE2wPYSs9WPm_4-ybXPt_UmQ8K9KB5uh8HxD839HEQfY27rYCZ_wYZYJEUYiSVgm9nFAVfIzBtIdvKJG7muSuJrmvKeG_JjydUsOH_Zr-BG1KkiM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2689669718</pqid></control><display><type>article</type><title>Radiomics Analysis on Noncontrast CT for Distinguishing Hepatic Hemangioma (HH) and Hepatocellular Carcinoma (HCC)</title><source>PubMed Central Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Hu, Shuyi ; Lyu, Xiajie ; Li, Weifeng ; Cui, Xiaohan ; Liu, Qiaoyu ; Xu, Xiaoliang ; Wang, Jincheng ; Chen, Lin ; Zhang, Xudong ; Yin, Yin</creator><contributor>Teekaraman, Yuvaraja</contributor><creatorcontrib>Hu, Shuyi ; Lyu, Xiajie ; Li, Weifeng ; Cui, Xiaohan ; Liu, Qiaoyu ; Xu, Xiaoliang ; Wang, Jincheng ; Chen, Lin ; Zhang, Xudong ; Yin, Yin ; Teekaraman, Yuvaraja</creatorcontrib><description>Background. To form a radiomic model on the basis of noncontrast computed tomography (CT) to distinguish hepatic hemangioma (HH) and hepatocellular carcinoma (HCC). Methods. In this retrospective study, a total of 110 patients were reviewed, including 72 HCC and 38 HH. We accomplished feature selection with the least absolute shrinkage and operator (LASSO) and built a radiomics signature. Another improved model (radiomics index) was established using forward conditional multivariate logistic regression. Both models were tested in an internal validation group (38 HCC and 21 HH). Results. The radiomic signature we built including 5 radiomic features demonstrated significant differences between the hepatic HH and HCC groups P&lt;0.05. The improved model demonstrated a higher net benefit based on only 2 radiomic features. In the validation group, radiomics signature and radiomics index achieved great diagnostic performance with AUC values of 0.716 (95% confidence interval (CI): 0.581, 0.850) and 0.870 (95% CI: 0.782, 0.957), respectively. Conclusions. Our developed radiomics-based model can successfully distinguish HH and HCC patients, which can help clinical decision-making with lower cost.</description><identifier>ISSN: 1555-4309</identifier><identifier>EISSN: 1555-4317</identifier><identifier>DOI: 10.1155/2022/7693631</identifier><identifier>PMID: 35833080</identifier><language>eng</language><publisher>Hindawi</publisher><ispartof>Contrast media and molecular imaging, 2022, Vol.2022 (1), p.7693631-7693631</ispartof><rights>Copyright © 2022 Shuyi Hu et al.</rights><rights>Copyright © 2022 Shuyi Hu et al. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c397t-83db738dd2a36b8df48f65e792cbf1950ddd51a462e9aedb55e7bf65ab8e5a443</citedby><cites>FETCH-LOGICAL-c397t-83db738dd2a36b8df48f65e792cbf1950ddd51a462e9aedb55e7bf65ab8e5a443</cites><orcidid>0000-0001-7918-9413 ; 0000-0001-8113-4278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252683/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9252683/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,4024,27923,27924,27925,53791,53793</link.rule.ids></links><search><contributor>Teekaraman, Yuvaraja</contributor><creatorcontrib>Hu, Shuyi</creatorcontrib><creatorcontrib>Lyu, Xiajie</creatorcontrib><creatorcontrib>Li, Weifeng</creatorcontrib><creatorcontrib>Cui, Xiaohan</creatorcontrib><creatorcontrib>Liu, Qiaoyu</creatorcontrib><creatorcontrib>Xu, Xiaoliang</creatorcontrib><creatorcontrib>Wang, Jincheng</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Zhang, Xudong</creatorcontrib><creatorcontrib>Yin, Yin</creatorcontrib><title>Radiomics Analysis on Noncontrast CT for Distinguishing Hepatic Hemangioma (HH) and Hepatocellular Carcinoma (HCC)</title><title>Contrast media and molecular imaging</title><description>Background. To form a radiomic model on the basis of noncontrast computed tomography (CT) to distinguish hepatic hemangioma (HH) and hepatocellular carcinoma (HCC). Methods. In this retrospective study, a total of 110 patients were reviewed, including 72 HCC and 38 HH. We accomplished feature selection with the least absolute shrinkage and operator (LASSO) and built a radiomics signature. Another improved model (radiomics index) was established using forward conditional multivariate logistic regression. Both models were tested in an internal validation group (38 HCC and 21 HH). Results. The radiomic signature we built including 5 radiomic features demonstrated significant differences between the hepatic HH and HCC groups P&lt;0.05. The improved model demonstrated a higher net benefit based on only 2 radiomic features. In the validation group, radiomics signature and radiomics index achieved great diagnostic performance with AUC values of 0.716 (95% confidence interval (CI): 0.581, 0.850) and 0.870 (95% CI: 0.782, 0.957), respectively. Conclusions. Our developed radiomics-based model can successfully distinguish HH and HCC patients, which can help clinical decision-making with lower cost.</description><issn>1555-4309</issn><issn>1555-4317</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><recordid>eNp9kV9L5DAUxcOysqPjvvkB8qiso0nTtM3LgtQ_I4iCzD6H2yQdI20ym7Qr8-3N0GFgX3w6l5wfJ9x7EDqj5IpSzq8zkmXXZSFYweg3dJye-CJntPx-mImYoZMY3wnJcybYDzRjvGKMVOQYhVfQ1vdWRXzjoNtGG7F3-Nk75d0QIA64XuHWB3xr42DderTxLQlemg0MViXtwa1TBODz5fICg9OT55XpurGDgGsIyrqJqOuLU3TUQhfNz73O0Z_7u1W9XDy9PDzWN08LxUQ5LCqmm5JVWmfAiqbSbV61BTelyFTTUsGJ1ppTyIvMCDC64clrEgFNZTikTefo95S7GZveaGV2-3RyE2wPYSs9WPm_4-ybXPt_UmQ8K9KB5uh8HxD839HEQfY27rYCZ_wYZYJEUYiSVgm9nFAVfIzBtIdvKJG7muSuJrmvKeG_JjydUsOH_Zr-BG1KkiM</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Hu, Shuyi</creator><creator>Lyu, Xiajie</creator><creator>Li, Weifeng</creator><creator>Cui, Xiaohan</creator><creator>Liu, Qiaoyu</creator><creator>Xu, Xiaoliang</creator><creator>Wang, Jincheng</creator><creator>Chen, Lin</creator><creator>Zhang, Xudong</creator><creator>Yin, Yin</creator><general>Hindawi</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7918-9413</orcidid><orcidid>https://orcid.org/0000-0001-8113-4278</orcidid></search><sort><creationdate>2022</creationdate><title>Radiomics Analysis on Noncontrast CT for Distinguishing Hepatic Hemangioma (HH) and Hepatocellular Carcinoma (HCC)</title><author>Hu, Shuyi ; Lyu, Xiajie ; Li, Weifeng ; Cui, Xiaohan ; Liu, Qiaoyu ; Xu, Xiaoliang ; Wang, Jincheng ; Chen, Lin ; Zhang, Xudong ; Yin, Yin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c397t-83db738dd2a36b8df48f65e792cbf1950ddd51a462e9aedb55e7bf65ab8e5a443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hu, Shuyi</creatorcontrib><creatorcontrib>Lyu, Xiajie</creatorcontrib><creatorcontrib>Li, Weifeng</creatorcontrib><creatorcontrib>Cui, Xiaohan</creatorcontrib><creatorcontrib>Liu, Qiaoyu</creatorcontrib><creatorcontrib>Xu, Xiaoliang</creatorcontrib><creatorcontrib>Wang, Jincheng</creatorcontrib><creatorcontrib>Chen, Lin</creatorcontrib><creatorcontrib>Zhang, Xudong</creatorcontrib><creatorcontrib>Yin, Yin</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Contrast media and molecular imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hu, Shuyi</au><au>Lyu, Xiajie</au><au>Li, Weifeng</au><au>Cui, Xiaohan</au><au>Liu, Qiaoyu</au><au>Xu, Xiaoliang</au><au>Wang, Jincheng</au><au>Chen, Lin</au><au>Zhang, Xudong</au><au>Yin, Yin</au><au>Teekaraman, Yuvaraja</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Radiomics Analysis on Noncontrast CT for Distinguishing Hepatic Hemangioma (HH) and Hepatocellular Carcinoma (HCC)</atitle><jtitle>Contrast media and molecular imaging</jtitle><date>2022</date><risdate>2022</risdate><volume>2022</volume><issue>1</issue><spage>7693631</spage><epage>7693631</epage><pages>7693631-7693631</pages><issn>1555-4309</issn><eissn>1555-4317</eissn><abstract>Background. To form a radiomic model on the basis of noncontrast computed tomography (CT) to distinguish hepatic hemangioma (HH) and hepatocellular carcinoma (HCC). Methods. In this retrospective study, a total of 110 patients were reviewed, including 72 HCC and 38 HH. We accomplished feature selection with the least absolute shrinkage and operator (LASSO) and built a radiomics signature. Another improved model (radiomics index) was established using forward conditional multivariate logistic regression. Both models were tested in an internal validation group (38 HCC and 21 HH). Results. The radiomic signature we built including 5 radiomic features demonstrated significant differences between the hepatic HH and HCC groups P&lt;0.05. The improved model demonstrated a higher net benefit based on only 2 radiomic features. In the validation group, radiomics signature and radiomics index achieved great diagnostic performance with AUC values of 0.716 (95% confidence interval (CI): 0.581, 0.850) and 0.870 (95% CI: 0.782, 0.957), respectively. Conclusions. Our developed radiomics-based model can successfully distinguish HH and HCC patients, which can help clinical decision-making with lower cost.</abstract><pub>Hindawi</pub><pmid>35833080</pmid><doi>10.1155/2022/7693631</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-7918-9413</orcidid><orcidid>https://orcid.org/0000-0001-8113-4278</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1555-4309
ispartof Contrast media and molecular imaging, 2022, Vol.2022 (1), p.7693631-7693631
issn 1555-4309
1555-4317
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9252683
source PubMed Central Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
title Radiomics Analysis on Noncontrast CT for Distinguishing Hepatic Hemangioma (HH) and Hepatocellular Carcinoma (HCC)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T01%3A07%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Radiomics%20Analysis%20on%20Noncontrast%20CT%20for%20Distinguishing%20Hepatic%20Hemangioma%20(HH)%20and%20Hepatocellular%20Carcinoma%20(HCC)&rft.jtitle=Contrast%20media%20and%20molecular%20imaging&rft.au=Hu,%20Shuyi&rft.date=2022&rft.volume=2022&rft.issue=1&rft.spage=7693631&rft.epage=7693631&rft.pages=7693631-7693631&rft.issn=1555-4309&rft.eissn=1555-4317&rft_id=info:doi/10.1155/2022/7693631&rft_dat=%3Cproquest_pubme%3E2689669718%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2689669718&rft_id=info:pmid/35833080&rfr_iscdi=true