Mechanistic Studies of a Skatole-Forming Glycyl Radical Enzyme Suggest Reaction Initiation via Hydrogen Atom Transfer

Gut microbial decarboxylation of amino acid-derived arylacetates is a chemically challenging enzymatic transformation which generates small molecules that impact host physiology. The glycyl radical enzyme (GRE) indoleacetate decarboxylase from Olsenella uli (Ou IAD) performs the non-oxidative radica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the American Chemical Society 2022-06, Vol.144 (25), p.11110-11119
Hauptverfasser: Fu, Beverly, Nazemi, Azadeh, Levin, Benjamin J., Yang, Zhongyue, Kulik, Heather J., Balskus, Emily P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11119
container_issue 25
container_start_page 11110
container_title Journal of the American Chemical Society
container_volume 144
creator Fu, Beverly
Nazemi, Azadeh
Levin, Benjamin J.
Yang, Zhongyue
Kulik, Heather J.
Balskus, Emily P.
description Gut microbial decarboxylation of amino acid-derived arylacetates is a chemically challenging enzymatic transformation which generates small molecules that impact host physiology. The glycyl radical enzyme (GRE) indoleacetate decarboxylase from Olsenella uli (Ou IAD) performs the non-oxidative radical decarboxylation of indole-3-acetate (I3A) to yield skatole, a disease-associated metabolite produced in the guts of swine and ruminants. Despite the importance of IAD, our understanding of its mechanism is limited. Here, we characterize the mechanism of Ou IAD, evaluating previously proposed hypotheses of: (1) a Kolbe-type decarboxylation reaction involving an initial 1-e– oxidation of the carboxylate of I3A or (2) a hydrogen atom abstraction from the α-carbon of I3A to generate an initial carbon-centered radical. Site-directed mutagenesis, kinetic isotope effect experiments, analysis of reactions performed in D2O, and computational modeling are consistent with a mechanism involving initial hydrogen atom transfer. This finding expands the types of radical mechanisms employed by GRE decarboxylases and non-oxidative decarboxylases, more broadly. Elucidating the mechanism of IAD decarboxylation enhances our understanding of radical enzymes and may inform downstream efforts to modulate this disease-associated metabolism.
doi_str_mv 10.1021/jacs.1c13580
format Article
fullrecord <record><control><sourceid>acs_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9248008</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>c645378612</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-8910ebbdd88e358194732fb04c03f427bfe61eda84346fc9cc2fd7de3c0815183</originalsourceid><addsrcrecordid>eNptkc1P3DAQxa2qqCy0t54ri1MPDdiOs3EuSAjxJYGQWHq2HHscvE1sZDtI6V_fLAsIpJ7GI__8ZvweQt8pOaSE0aO10umQalpWgnxCC1oxUlSULT-jBSGEFbVYlrtoL6X13HIm6Be0W1Y14aJqFmi8Af2gvEvZabzKo3GQcLBY4dUflUMPxXmIg_MdvugnPfX4ThmnVY_P_N9pALwauw5SxnegdHbB4yvvslPPxyen8OVkYujA45McBnwflU8W4le0Y1Wf4NtL3Ue_z8_uTy-L69uLq9OT60JxznMhGkqgbY0RAubv0YbXJbMt4ZqUlrO6tbCkYJTgJV9a3WjNrKkNlJoIWlFR7qPjre7j2A5gNPgcVS8foxtUnGRQTn688e5BduFJNowLQjYCB1uBMBskk3Z5tksH70FnSUXNqmfo1xbSMaQUwb4NoERuMpKbjORLRjP-4_1Sb_BrKDPwcwtsXq3DGP3s0f-1_gFlVJ0D</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Mechanistic Studies of a Skatole-Forming Glycyl Radical Enzyme Suggest Reaction Initiation via Hydrogen Atom Transfer</title><source>ACS Publications</source><creator>Fu, Beverly ; Nazemi, Azadeh ; Levin, Benjamin J. ; Yang, Zhongyue ; Kulik, Heather J. ; Balskus, Emily P.</creator><creatorcontrib>Fu, Beverly ; Nazemi, Azadeh ; Levin, Benjamin J. ; Yang, Zhongyue ; Kulik, Heather J. ; Balskus, Emily P.</creatorcontrib><description>Gut microbial decarboxylation of amino acid-derived arylacetates is a chemically challenging enzymatic transformation which generates small molecules that impact host physiology. The glycyl radical enzyme (GRE) indoleacetate decarboxylase from Olsenella uli (Ou IAD) performs the non-oxidative radical decarboxylation of indole-3-acetate (I3A) to yield skatole, a disease-associated metabolite produced in the guts of swine and ruminants. Despite the importance of IAD, our understanding of its mechanism is limited. Here, we characterize the mechanism of Ou IAD, evaluating previously proposed hypotheses of: (1) a Kolbe-type decarboxylation reaction involving an initial 1-e– oxidation of the carboxylate of I3A or (2) a hydrogen atom abstraction from the α-carbon of I3A to generate an initial carbon-centered radical. Site-directed mutagenesis, kinetic isotope effect experiments, analysis of reactions performed in D2O, and computational modeling are consistent with a mechanism involving initial hydrogen atom transfer. This finding expands the types of radical mechanisms employed by GRE decarboxylases and non-oxidative decarboxylases, more broadly. Elucidating the mechanism of IAD decarboxylation enhances our understanding of radical enzymes and may inform downstream efforts to modulate this disease-associated metabolism.</description><identifier>ISSN: 0002-7863</identifier><identifier>EISSN: 1520-5126</identifier><identifier>DOI: 10.1021/jacs.1c13580</identifier><identifier>PMID: 35704859</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of the American Chemical Society, 2022-06, Vol.144 (25), p.11110-11119</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-8910ebbdd88e358194732fb04c03f427bfe61eda84346fc9cc2fd7de3c0815183</citedby><cites>FETCH-LOGICAL-a444t-8910ebbdd88e358194732fb04c03f427bfe61eda84346fc9cc2fd7de3c0815183</cites><orcidid>0000-0003-3220-9303 ; 0000-0001-9342-0191 ; 0000-0001-5985-5714 ; 0000-0002-7326-6796 ; 0000-0003-0395-6617 ; 0000-0002-2345-6911 ; 0000000332209303 ; 0000000303956617 ; 0000000223456911 ; 0000000193420191 ; 0000000273266796 ; 0000000159855714</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jacs.1c13580$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jacs.1c13580$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,776,780,881,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35704859$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1872508$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Fu, Beverly</creatorcontrib><creatorcontrib>Nazemi, Azadeh</creatorcontrib><creatorcontrib>Levin, Benjamin J.</creatorcontrib><creatorcontrib>Yang, Zhongyue</creatorcontrib><creatorcontrib>Kulik, Heather J.</creatorcontrib><creatorcontrib>Balskus, Emily P.</creatorcontrib><title>Mechanistic Studies of a Skatole-Forming Glycyl Radical Enzyme Suggest Reaction Initiation via Hydrogen Atom Transfer</title><title>Journal of the American Chemical Society</title><addtitle>J. Am. Chem. Soc</addtitle><description>Gut microbial decarboxylation of amino acid-derived arylacetates is a chemically challenging enzymatic transformation which generates small molecules that impact host physiology. The glycyl radical enzyme (GRE) indoleacetate decarboxylase from Olsenella uli (Ou IAD) performs the non-oxidative radical decarboxylation of indole-3-acetate (I3A) to yield skatole, a disease-associated metabolite produced in the guts of swine and ruminants. Despite the importance of IAD, our understanding of its mechanism is limited. Here, we characterize the mechanism of Ou IAD, evaluating previously proposed hypotheses of: (1) a Kolbe-type decarboxylation reaction involving an initial 1-e– oxidation of the carboxylate of I3A or (2) a hydrogen atom abstraction from the α-carbon of I3A to generate an initial carbon-centered radical. Site-directed mutagenesis, kinetic isotope effect experiments, analysis of reactions performed in D2O, and computational modeling are consistent with a mechanism involving initial hydrogen atom transfer. This finding expands the types of radical mechanisms employed by GRE decarboxylases and non-oxidative decarboxylases, more broadly. Elucidating the mechanism of IAD decarboxylation enhances our understanding of radical enzymes and may inform downstream efforts to modulate this disease-associated metabolism.</description><issn>0002-7863</issn><issn>1520-5126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNptkc1P3DAQxa2qqCy0t54ri1MPDdiOs3EuSAjxJYGQWHq2HHscvE1sZDtI6V_fLAsIpJ7GI__8ZvweQt8pOaSE0aO10umQalpWgnxCC1oxUlSULT-jBSGEFbVYlrtoL6X13HIm6Be0W1Y14aJqFmi8Af2gvEvZabzKo3GQcLBY4dUflUMPxXmIg_MdvugnPfX4ThmnVY_P_N9pALwauw5SxnegdHbB4yvvslPPxyen8OVkYujA45McBnwflU8W4le0Y1Wf4NtL3Ue_z8_uTy-L69uLq9OT60JxznMhGkqgbY0RAubv0YbXJbMt4ZqUlrO6tbCkYJTgJV9a3WjNrKkNlJoIWlFR7qPjre7j2A5gNPgcVS8foxtUnGRQTn688e5BduFJNowLQjYCB1uBMBskk3Z5tksH70FnSUXNqmfo1xbSMaQUwb4NoERuMpKbjORLRjP-4_1Sb_BrKDPwcwtsXq3DGP3s0f-1_gFlVJ0D</recordid><startdate>20220629</startdate><enddate>20220629</enddate><creator>Fu, Beverly</creator><creator>Nazemi, Azadeh</creator><creator>Levin, Benjamin J.</creator><creator>Yang, Zhongyue</creator><creator>Kulik, Heather J.</creator><creator>Balskus, Emily P.</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>OTOTI</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-3220-9303</orcidid><orcidid>https://orcid.org/0000-0001-9342-0191</orcidid><orcidid>https://orcid.org/0000-0001-5985-5714</orcidid><orcidid>https://orcid.org/0000-0002-7326-6796</orcidid><orcidid>https://orcid.org/0000-0003-0395-6617</orcidid><orcidid>https://orcid.org/0000-0002-2345-6911</orcidid><orcidid>https://orcid.org/0000000332209303</orcidid><orcidid>https://orcid.org/0000000303956617</orcidid><orcidid>https://orcid.org/0000000223456911</orcidid><orcidid>https://orcid.org/0000000193420191</orcidid><orcidid>https://orcid.org/0000000273266796</orcidid><orcidid>https://orcid.org/0000000159855714</orcidid></search><sort><creationdate>20220629</creationdate><title>Mechanistic Studies of a Skatole-Forming Glycyl Radical Enzyme Suggest Reaction Initiation via Hydrogen Atom Transfer</title><author>Fu, Beverly ; Nazemi, Azadeh ; Levin, Benjamin J. ; Yang, Zhongyue ; Kulik, Heather J. ; Balskus, Emily P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-8910ebbdd88e358194732fb04c03f427bfe61eda84346fc9cc2fd7de3c0815183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fu, Beverly</creatorcontrib><creatorcontrib>Nazemi, Azadeh</creatorcontrib><creatorcontrib>Levin, Benjamin J.</creatorcontrib><creatorcontrib>Yang, Zhongyue</creatorcontrib><creatorcontrib>Kulik, Heather J.</creatorcontrib><creatorcontrib>Balskus, Emily P.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of the American Chemical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fu, Beverly</au><au>Nazemi, Azadeh</au><au>Levin, Benjamin J.</au><au>Yang, Zhongyue</au><au>Kulik, Heather J.</au><au>Balskus, Emily P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mechanistic Studies of a Skatole-Forming Glycyl Radical Enzyme Suggest Reaction Initiation via Hydrogen Atom Transfer</atitle><jtitle>Journal of the American Chemical Society</jtitle><addtitle>J. Am. Chem. Soc</addtitle><date>2022-06-29</date><risdate>2022</risdate><volume>144</volume><issue>25</issue><spage>11110</spage><epage>11119</epage><pages>11110-11119</pages><issn>0002-7863</issn><eissn>1520-5126</eissn><abstract>Gut microbial decarboxylation of amino acid-derived arylacetates is a chemically challenging enzymatic transformation which generates small molecules that impact host physiology. The glycyl radical enzyme (GRE) indoleacetate decarboxylase from Olsenella uli (Ou IAD) performs the non-oxidative radical decarboxylation of indole-3-acetate (I3A) to yield skatole, a disease-associated metabolite produced in the guts of swine and ruminants. Despite the importance of IAD, our understanding of its mechanism is limited. Here, we characterize the mechanism of Ou IAD, evaluating previously proposed hypotheses of: (1) a Kolbe-type decarboxylation reaction involving an initial 1-e– oxidation of the carboxylate of I3A or (2) a hydrogen atom abstraction from the α-carbon of I3A to generate an initial carbon-centered radical. Site-directed mutagenesis, kinetic isotope effect experiments, analysis of reactions performed in D2O, and computational modeling are consistent with a mechanism involving initial hydrogen atom transfer. This finding expands the types of radical mechanisms employed by GRE decarboxylases and non-oxidative decarboxylases, more broadly. Elucidating the mechanism of IAD decarboxylation enhances our understanding of radical enzymes and may inform downstream efforts to modulate this disease-associated metabolism.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35704859</pmid><doi>10.1021/jacs.1c13580</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3220-9303</orcidid><orcidid>https://orcid.org/0000-0001-9342-0191</orcidid><orcidid>https://orcid.org/0000-0001-5985-5714</orcidid><orcidid>https://orcid.org/0000-0002-7326-6796</orcidid><orcidid>https://orcid.org/0000-0003-0395-6617</orcidid><orcidid>https://orcid.org/0000-0002-2345-6911</orcidid><orcidid>https://orcid.org/0000000332209303</orcidid><orcidid>https://orcid.org/0000000303956617</orcidid><orcidid>https://orcid.org/0000000223456911</orcidid><orcidid>https://orcid.org/0000000193420191</orcidid><orcidid>https://orcid.org/0000000273266796</orcidid><orcidid>https://orcid.org/0000000159855714</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-7863
ispartof Journal of the American Chemical Society, 2022-06, Vol.144 (25), p.11110-11119
issn 0002-7863
1520-5126
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9248008
source ACS Publications
title Mechanistic Studies of a Skatole-Forming Glycyl Radical Enzyme Suggest Reaction Initiation via Hydrogen Atom Transfer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T22%3A19%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acs_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mechanistic%20Studies%20of%20a%20Skatole-Forming%20Glycyl%20Radical%20Enzyme%20Suggest%20Reaction%20Initiation%20via%20Hydrogen%20Atom%20Transfer&rft.jtitle=Journal%20of%20the%20American%20Chemical%20Society&rft.au=Fu,%20Beverly&rft.date=2022-06-29&rft.volume=144&rft.issue=25&rft.spage=11110&rft.epage=11119&rft.pages=11110-11119&rft.issn=0002-7863&rft.eissn=1520-5126&rft_id=info:doi/10.1021/jacs.1c13580&rft_dat=%3Cacs_pubme%3Ec645378612%3C/acs_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/35704859&rfr_iscdi=true