A hybrid empirical and parametric approach for managing ecosystem complexity: Water quality in Lake Geneva under nonstationary futures

Severe deterioration of water quality in lakes, characterized by overabundance of algae and declining dissolved oxygen in the deep lake (DO B ), was one of the ecological crises of the 20th century. Even with large reductions in phosphorus loading, termed “reoligotrophication,” DO B and chlorophyll...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2022-06, Vol.119 (26), p.1-e2102466119
Hauptverfasser: Deyle, Ethan R., Bouffard, Damien, Frossard, Victor, Schwefel, Robert, Melack, John, Sugihara, George
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2102466119
container_issue 26
container_start_page 1
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 119
creator Deyle, Ethan R.
Bouffard, Damien
Frossard, Victor
Schwefel, Robert
Melack, John
Sugihara, George
description Severe deterioration of water quality in lakes, characterized by overabundance of algae and declining dissolved oxygen in the deep lake (DO B ), was one of the ecological crises of the 20th century. Even with large reductions in phosphorus loading, termed “reoligotrophication,” DO B and chlorophyll (CHL) have often not returned to their expected pre–20th-century levels. Concurrently, management of lake health has been confounded by possible consequences of climate change, particularly since the effects of climate are not neatly separable from the effects of eutrophication. Here, using Lake Geneva as an iconic example, we demonstrate a complementary alternative to parametric models for understanding and managing lake systems. This involves establishing an empirically-driven baseline that uses supervised machine learning to capture the changing interdependencies among biogeochemical variables and then combining the empirical model with a more conventional equation-based model of lake physics to predict DO B over decadal time-scales. The hybrid model not only leads to substantially better forecasts, but also to a more actionable description of the emergent rates and processes (biogeochemical, ecological, etc.) that drive water quality. Notably, the hybrid model suggests that the impact of a moderate 3°C air temperature increase on water quality would be on the same order as the eutrophication of the previous century. The study provides a template and a practical path forward to cope with shifts in ecology to manage environmental systems for non-analogue futures.
doi_str_mv 10.1073/pnas.2102466119
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9245694</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682394120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c432t-99666b1912171c70538086f9e54dfa754a91c7427bbb587e9ee892de3a8348c83</originalsourceid><addsrcrecordid>eNpdkktv1DAUhS0EotPCmq0lNrBI61ceZoE0qqBFGokNiKV149zMuCR2aiejzh_gd-PRVEV0Zfncz-ceWYeQd5xdclbLq8lDuhScCVVVnOsXZMWZ5kWlNHtJVoyJumiUUGfkPKU7xpguG_aanMmyllIovSJ_1nR3aKPrKI6Ti87CQMF3dIIII85ZoDBNMYDd0T5EOoKHrfNbijakQ5pxpDaM04APbj58or9gxkjvFxjylTpPN_Ab6Q163ANdfJeHPvg0w-yCh3ig_TIvEdMb8qqHIeHbx_OC_Pz65cf1bbH5fvPter0prJJiLrSuqqrlmgtec1uzUjasqXqNpep6qEsFOstK1G3blk2NGrHRokMJjVSNbeQF-XzynZZ2xM6inyMMZopuzGlMAGf-n3i3M9uwN1qostIqG3w8GeyePbtdb8xRY4qJqtHlnmf2w-OyGO4XTLMZXbI4DOAxLMlkjglZ5mQZff8MvQtL9PkrjpSQWnHBMnV1omwMKUXsnxJwZo59MMc-mH99kH8BbC6pTw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682394120</pqid></control><display><type>article</type><title>A hybrid empirical and parametric approach for managing ecosystem complexity: Water quality in Lake Geneva under nonstationary futures</title><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Deyle, Ethan R. ; Bouffard, Damien ; Frossard, Victor ; Schwefel, Robert ; Melack, John ; Sugihara, George</creator><creatorcontrib>Deyle, Ethan R. ; Bouffard, Damien ; Frossard, Victor ; Schwefel, Robert ; Melack, John ; Sugihara, George</creatorcontrib><description>Severe deterioration of water quality in lakes, characterized by overabundance of algae and declining dissolved oxygen in the deep lake (DO B ), was one of the ecological crises of the 20th century. Even with large reductions in phosphorus loading, termed “reoligotrophication,” DO B and chlorophyll (CHL) have often not returned to their expected pre–20th-century levels. Concurrently, management of lake health has been confounded by possible consequences of climate change, particularly since the effects of climate are not neatly separable from the effects of eutrophication. Here, using Lake Geneva as an iconic example, we demonstrate a complementary alternative to parametric models for understanding and managing lake systems. This involves establishing an empirically-driven baseline that uses supervised machine learning to capture the changing interdependencies among biogeochemical variables and then combining the empirical model with a more conventional equation-based model of lake physics to predict DO B over decadal time-scales. The hybrid model not only leads to substantially better forecasts, but also to a more actionable description of the emergent rates and processes (biogeochemical, ecological, etc.) that drive water quality. Notably, the hybrid model suggests that the impact of a moderate 3°C air temperature increase on water quality would be on the same order as the eutrophication of the previous century. The study provides a template and a practical path forward to cope with shifts in ecology to manage environmental systems for non-analogue futures.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.2102466119</identifier><identifier>PMID: 35733249</identifier><language>eng</language><publisher>Washington: National Academy of Sciences</publisher><subject>Air temperature ; Algae ; Biogeochemistry ; Biological Sciences ; Chlorophyll ; Climate change ; Climate effects ; Dissolved oxygen ; Ecology ; Ecosystem management ; Empirical equations ; Eutrophication ; Food and Nutrition ; Lakes ; Life Sciences ; Machine learning ; Parametric statistics ; Phosphorus ; Water quality</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2022-06, Vol.119 (26), p.1-e2102466119</ispartof><rights>Copyright National Academy of Sciences Jun 28, 2022</rights><rights>Attribution</rights><rights>Copyright © 2022 the Author(s). Published by PNAS. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c432t-99666b1912171c70538086f9e54dfa754a91c7427bbb587e9ee892de3a8348c83</citedby><cites>FETCH-LOGICAL-c432t-99666b1912171c70538086f9e54dfa754a91c7427bbb587e9ee892de3a8348c83</cites><orcidid>0000-0003-1610-4181 ; 0000-0001-8704-8434 ; 0000-0003-1338-4739 ; 0000-0002-2863-6946 ; 0000-0003-0619-841X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245694/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9245694/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://hal.inrae.fr/hal-04026895$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Deyle, Ethan R.</creatorcontrib><creatorcontrib>Bouffard, Damien</creatorcontrib><creatorcontrib>Frossard, Victor</creatorcontrib><creatorcontrib>Schwefel, Robert</creatorcontrib><creatorcontrib>Melack, John</creatorcontrib><creatorcontrib>Sugihara, George</creatorcontrib><title>A hybrid empirical and parametric approach for managing ecosystem complexity: Water quality in Lake Geneva under nonstationary futures</title><title>Proceedings of the National Academy of Sciences - PNAS</title><description>Severe deterioration of water quality in lakes, characterized by overabundance of algae and declining dissolved oxygen in the deep lake (DO B ), was one of the ecological crises of the 20th century. Even with large reductions in phosphorus loading, termed “reoligotrophication,” DO B and chlorophyll (CHL) have often not returned to their expected pre–20th-century levels. Concurrently, management of lake health has been confounded by possible consequences of climate change, particularly since the effects of climate are not neatly separable from the effects of eutrophication. Here, using Lake Geneva as an iconic example, we demonstrate a complementary alternative to parametric models for understanding and managing lake systems. This involves establishing an empirically-driven baseline that uses supervised machine learning to capture the changing interdependencies among biogeochemical variables and then combining the empirical model with a more conventional equation-based model of lake physics to predict DO B over decadal time-scales. The hybrid model not only leads to substantially better forecasts, but also to a more actionable description of the emergent rates and processes (biogeochemical, ecological, etc.) that drive water quality. Notably, the hybrid model suggests that the impact of a moderate 3°C air temperature increase on water quality would be on the same order as the eutrophication of the previous century. The study provides a template and a practical path forward to cope with shifts in ecology to manage environmental systems for non-analogue futures.</description><subject>Air temperature</subject><subject>Algae</subject><subject>Biogeochemistry</subject><subject>Biological Sciences</subject><subject>Chlorophyll</subject><subject>Climate change</subject><subject>Climate effects</subject><subject>Dissolved oxygen</subject><subject>Ecology</subject><subject>Ecosystem management</subject><subject>Empirical equations</subject><subject>Eutrophication</subject><subject>Food and Nutrition</subject><subject>Lakes</subject><subject>Life Sciences</subject><subject>Machine learning</subject><subject>Parametric statistics</subject><subject>Phosphorus</subject><subject>Water quality</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpdkktv1DAUhS0EotPCmq0lNrBI61ceZoE0qqBFGokNiKV149zMuCR2aiejzh_gd-PRVEV0Zfncz-ceWYeQd5xdclbLq8lDuhScCVVVnOsXZMWZ5kWlNHtJVoyJumiUUGfkPKU7xpguG_aanMmyllIovSJ_1nR3aKPrKI6Ti87CQMF3dIIII85ZoDBNMYDd0T5EOoKHrfNbijakQ5pxpDaM04APbj58or9gxkjvFxjylTpPN_Ab6Q163ANdfJeHPvg0w-yCh3ig_TIvEdMb8qqHIeHbx_OC_Pz65cf1bbH5fvPter0prJJiLrSuqqrlmgtec1uzUjasqXqNpep6qEsFOstK1G3blk2NGrHRokMJjVSNbeQF-XzynZZ2xM6inyMMZopuzGlMAGf-n3i3M9uwN1qostIqG3w8GeyePbtdb8xRY4qJqtHlnmf2w-OyGO4XTLMZXbI4DOAxLMlkjglZ5mQZff8MvQtL9PkrjpSQWnHBMnV1omwMKUXsnxJwZo59MMc-mH99kH8BbC6pTw</recordid><startdate>20220628</startdate><enddate>20220628</enddate><creator>Deyle, Ethan R.</creator><creator>Bouffard, Damien</creator><creator>Frossard, Victor</creator><creator>Schwefel, Robert</creator><creator>Melack, John</creator><creator>Sugihara, George</creator><general>National Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1610-4181</orcidid><orcidid>https://orcid.org/0000-0001-8704-8434</orcidid><orcidid>https://orcid.org/0000-0003-1338-4739</orcidid><orcidid>https://orcid.org/0000-0002-2863-6946</orcidid><orcidid>https://orcid.org/0000-0003-0619-841X</orcidid></search><sort><creationdate>20220628</creationdate><title>A hybrid empirical and parametric approach for managing ecosystem complexity: Water quality in Lake Geneva under nonstationary futures</title><author>Deyle, Ethan R. ; Bouffard, Damien ; Frossard, Victor ; Schwefel, Robert ; Melack, John ; Sugihara, George</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c432t-99666b1912171c70538086f9e54dfa754a91c7427bbb587e9ee892de3a8348c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Air temperature</topic><topic>Algae</topic><topic>Biogeochemistry</topic><topic>Biological Sciences</topic><topic>Chlorophyll</topic><topic>Climate change</topic><topic>Climate effects</topic><topic>Dissolved oxygen</topic><topic>Ecology</topic><topic>Ecosystem management</topic><topic>Empirical equations</topic><topic>Eutrophication</topic><topic>Food and Nutrition</topic><topic>Lakes</topic><topic>Life Sciences</topic><topic>Machine learning</topic><topic>Parametric statistics</topic><topic>Phosphorus</topic><topic>Water quality</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deyle, Ethan R.</creatorcontrib><creatorcontrib>Bouffard, Damien</creatorcontrib><creatorcontrib>Frossard, Victor</creatorcontrib><creatorcontrib>Schwefel, Robert</creatorcontrib><creatorcontrib>Melack, John</creatorcontrib><creatorcontrib>Sugihara, George</creatorcontrib><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deyle, Ethan R.</au><au>Bouffard, Damien</au><au>Frossard, Victor</au><au>Schwefel, Robert</au><au>Melack, John</au><au>Sugihara, George</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid empirical and parametric approach for managing ecosystem complexity: Water quality in Lake Geneva under nonstationary futures</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><date>2022-06-28</date><risdate>2022</risdate><volume>119</volume><issue>26</issue><spage>1</spage><epage>e2102466119</epage><pages>1-e2102466119</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Severe deterioration of water quality in lakes, characterized by overabundance of algae and declining dissolved oxygen in the deep lake (DO B ), was one of the ecological crises of the 20th century. Even with large reductions in phosphorus loading, termed “reoligotrophication,” DO B and chlorophyll (CHL) have often not returned to their expected pre–20th-century levels. Concurrently, management of lake health has been confounded by possible consequences of climate change, particularly since the effects of climate are not neatly separable from the effects of eutrophication. Here, using Lake Geneva as an iconic example, we demonstrate a complementary alternative to parametric models for understanding and managing lake systems. This involves establishing an empirically-driven baseline that uses supervised machine learning to capture the changing interdependencies among biogeochemical variables and then combining the empirical model with a more conventional equation-based model of lake physics to predict DO B over decadal time-scales. The hybrid model not only leads to substantially better forecasts, but also to a more actionable description of the emergent rates and processes (biogeochemical, ecological, etc.) that drive water quality. Notably, the hybrid model suggests that the impact of a moderate 3°C air temperature increase on water quality would be on the same order as the eutrophication of the previous century. The study provides a template and a practical path forward to cope with shifts in ecology to manage environmental systems for non-analogue futures.</abstract><cop>Washington</cop><pub>National Academy of Sciences</pub><pmid>35733249</pmid><doi>10.1073/pnas.2102466119</doi><orcidid>https://orcid.org/0000-0003-1610-4181</orcidid><orcidid>https://orcid.org/0000-0001-8704-8434</orcidid><orcidid>https://orcid.org/0000-0003-1338-4739</orcidid><orcidid>https://orcid.org/0000-0002-2863-6946</orcidid><orcidid>https://orcid.org/0000-0003-0619-841X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2022-06, Vol.119 (26), p.1-e2102466119
issn 0027-8424
1091-6490
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9245694
source PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Air temperature
Algae
Biogeochemistry
Biological Sciences
Chlorophyll
Climate change
Climate effects
Dissolved oxygen
Ecology
Ecosystem management
Empirical equations
Eutrophication
Food and Nutrition
Lakes
Life Sciences
Machine learning
Parametric statistics
Phosphorus
Water quality
title A hybrid empirical and parametric approach for managing ecosystem complexity: Water quality in Lake Geneva under nonstationary futures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A35%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20empirical%20and%20parametric%20approach%20for%20managing%20ecosystem%20complexity:%20Water%20quality%20in%20Lake%20Geneva%20under%20nonstationary%20futures&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Deyle,%20Ethan%20R.&rft.date=2022-06-28&rft.volume=119&rft.issue=26&rft.spage=1&rft.epage=e2102466119&rft.pages=1-e2102466119&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.2102466119&rft_dat=%3Cproquest_pubme%3E2682394120%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682394120&rft_id=info:pmid/35733249&rfr_iscdi=true