Nanocellulose Paper Semiconductor with a 3D Network Structure and Its Nano–Micro–Macro Trans-Scale Design

Semiconducting nanomaterials with 3D network structures exhibit various fascinating properties such as electrical conduction, high permeability, and large surface areas, which are beneficial for adsorption, separation, and sensing applications. However, research on these materials is substantially r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2022-06, Vol.16 (6), p.8630-8640
Hauptverfasser: Koga, Hirotaka, Nagashima, Kazuki, Suematsu, Koichi, Takahashi, Tsunaki, Zhu, Luting, Fukushima, Daiki, Huang, Yintong, Nakagawa, Ryo, Liu, Jiangyang, Uetani, Kojiro, Nogi, Masaya, Yanagida, Takeshi, Nishina, Yuta
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8640
container_issue 6
container_start_page 8630
container_title ACS nano
container_volume 16
creator Koga, Hirotaka
Nagashima, Kazuki
Suematsu, Koichi
Takahashi, Tsunaki
Zhu, Luting
Fukushima, Daiki
Huang, Yintong
Nakagawa, Ryo
Liu, Jiangyang
Uetani, Kojiro
Nogi, Masaya
Yanagida, Takeshi
Nishina, Yuta
description Semiconducting nanomaterials with 3D network structures exhibit various fascinating properties such as electrical conduction, high permeability, and large surface areas, which are beneficial for adsorption, separation, and sensing applications. However, research on these materials is substantially restricted by the limited trans-scalability of their structural design and tunability of electrical conductivity. To overcome this challenge, a pyrolyzed cellulose nanofiber paper (CNP) semiconductor with a 3D network structure is proposed. Its nano–micro–macro trans-scale structural design is achieved by a combination of iodine-mediated morphology-retaining pyrolysis with spatially controlled drying of a cellulose nanofiber dispersion and paper-crafting techniques, such as microembossing, origami, and kirigami. The electrical conduction of this semiconductor is widely and systematically tuned, via the temperature-controlled progressive pyrolysis of CNP, from insulating (1012 Ω cm) to quasimetallic (10–2 Ω cm), which considerably exceeds that attained in other previously reported nanomaterials with 3D networks. The pyrolyzed CNP semiconductor provides not only the tailorable functionality for applications ranging from water-vapor-selective sensors to enzymatic biofuel cell electrodes but also the designability of macroscopic device configurations for stretchable and wearable applications. This study provides a pathway to realize structurally and functionally designable semiconducting nanomaterials and all-nanocellulose semiconducting technology for diverse electronics.
doi_str_mv 10.1021/acsnano.1c10728
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9245344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2655562997</sourcerecordid><originalsourceid>FETCH-LOGICAL-a469t-ea44f1083bccebf3e416e0a36d1ad932c094357f42e1cb727cff4960311c30793</originalsourceid><addsrcrecordid>eNp1kUFPFTEUhRsjEUTX7kiXJmagnXba6YbEgAIJosnDxF1zX-cODMy0j3ZG4o7_4D_0l9DHe77gwtVpcr9z2t5DyDvO9jkr-QG45MGHfe4402X9guxwI1TBavXj5eZc8W3yOqUbxipda_WKbItKas5YvUOGi2x32PdTHxLSb7DASGc4dC74ZnJjiPS-G68pUHFML3C8D_GWzsaYR1NECr6hZ2Oiy5Q_D7-_dC4-KWSllxF8KmYOeqTHmLor_4ZstdAnfLvWXfL986fLo9Pi_OvJ2dHH8wKkMmOBIGXLWS3mzuG8FSi5QgZCNRwaI0rHjBSVbmWJ3M11qV3bSqOY4NwJpo3YJYer3MU0H7Bx6McIvV3EboD4ywbo7L8T313bq_DTmlJWQsoc8H4dEMPdhGm0Q5eWawKPYUq2VFVVqdIYndGDFZq_nFLEdnMNZ3ZZkl2XZNclZcfe89dt-L-tZODDCshOexOm6POy_hv3CJHOoVc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2655562997</pqid></control><display><type>article</type><title>Nanocellulose Paper Semiconductor with a 3D Network Structure and Its Nano–Micro–Macro Trans-Scale Design</title><source>American Chemical Society Journals</source><creator>Koga, Hirotaka ; Nagashima, Kazuki ; Suematsu, Koichi ; Takahashi, Tsunaki ; Zhu, Luting ; Fukushima, Daiki ; Huang, Yintong ; Nakagawa, Ryo ; Liu, Jiangyang ; Uetani, Kojiro ; Nogi, Masaya ; Yanagida, Takeshi ; Nishina, Yuta</creator><creatorcontrib>Koga, Hirotaka ; Nagashima, Kazuki ; Suematsu, Koichi ; Takahashi, Tsunaki ; Zhu, Luting ; Fukushima, Daiki ; Huang, Yintong ; Nakagawa, Ryo ; Liu, Jiangyang ; Uetani, Kojiro ; Nogi, Masaya ; Yanagida, Takeshi ; Nishina, Yuta</creatorcontrib><description>Semiconducting nanomaterials with 3D network structures exhibit various fascinating properties such as electrical conduction, high permeability, and large surface areas, which are beneficial for adsorption, separation, and sensing applications. However, research on these materials is substantially restricted by the limited trans-scalability of their structural design and tunability of electrical conductivity. To overcome this challenge, a pyrolyzed cellulose nanofiber paper (CNP) semiconductor with a 3D network structure is proposed. Its nano–micro–macro trans-scale structural design is achieved by a combination of iodine-mediated morphology-retaining pyrolysis with spatially controlled drying of a cellulose nanofiber dispersion and paper-crafting techniques, such as microembossing, origami, and kirigami. The electrical conduction of this semiconductor is widely and systematically tuned, via the temperature-controlled progressive pyrolysis of CNP, from insulating (1012 Ω cm) to quasimetallic (10–2 Ω cm), which considerably exceeds that attained in other previously reported nanomaterials with 3D networks. The pyrolyzed CNP semiconductor provides not only the tailorable functionality for applications ranging from water-vapor-selective sensors to enzymatic biofuel cell electrodes but also the designability of macroscopic device configurations for stretchable and wearable applications. This study provides a pathway to realize structurally and functionally designable semiconducting nanomaterials and all-nanocellulose semiconducting technology for diverse electronics.</description><identifier>ISSN: 1936-0851</identifier><identifier>ISSN: 1936-086X</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.1c10728</identifier><identifier>PMID: 35471008</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS nano, 2022-06, Vol.16 (6), p.8630-8640</ispartof><rights>2022 The Authors. Published by American Chemical Society</rights><rights>2022 The Authors. Published by American Chemical Society 2022 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a469t-ea44f1083bccebf3e416e0a36d1ad932c094357f42e1cb727cff4960311c30793</citedby><cites>FETCH-LOGICAL-a469t-ea44f1083bccebf3e416e0a36d1ad932c094357f42e1cb727cff4960311c30793</cites><orcidid>0000-0002-2840-8038 ; 0000-0001-6295-1731 ; 0000-0002-6170-447X ; 0000-0002-4958-1753 ; 0000-0003-4837-5701 ; 0000-0003-0180-816X ; 0000-0003-3245-6929</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.1c10728$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.1c10728$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35471008$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Koga, Hirotaka</creatorcontrib><creatorcontrib>Nagashima, Kazuki</creatorcontrib><creatorcontrib>Suematsu, Koichi</creatorcontrib><creatorcontrib>Takahashi, Tsunaki</creatorcontrib><creatorcontrib>Zhu, Luting</creatorcontrib><creatorcontrib>Fukushima, Daiki</creatorcontrib><creatorcontrib>Huang, Yintong</creatorcontrib><creatorcontrib>Nakagawa, Ryo</creatorcontrib><creatorcontrib>Liu, Jiangyang</creatorcontrib><creatorcontrib>Uetani, Kojiro</creatorcontrib><creatorcontrib>Nogi, Masaya</creatorcontrib><creatorcontrib>Yanagida, Takeshi</creatorcontrib><creatorcontrib>Nishina, Yuta</creatorcontrib><title>Nanocellulose Paper Semiconductor with a 3D Network Structure and Its Nano–Micro–Macro Trans-Scale Design</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>Semiconducting nanomaterials with 3D network structures exhibit various fascinating properties such as electrical conduction, high permeability, and large surface areas, which are beneficial for adsorption, separation, and sensing applications. However, research on these materials is substantially restricted by the limited trans-scalability of their structural design and tunability of electrical conductivity. To overcome this challenge, a pyrolyzed cellulose nanofiber paper (CNP) semiconductor with a 3D network structure is proposed. Its nano–micro–macro trans-scale structural design is achieved by a combination of iodine-mediated morphology-retaining pyrolysis with spatially controlled drying of a cellulose nanofiber dispersion and paper-crafting techniques, such as microembossing, origami, and kirigami. The electrical conduction of this semiconductor is widely and systematically tuned, via the temperature-controlled progressive pyrolysis of CNP, from insulating (1012 Ω cm) to quasimetallic (10–2 Ω cm), which considerably exceeds that attained in other previously reported nanomaterials with 3D networks. The pyrolyzed CNP semiconductor provides not only the tailorable functionality for applications ranging from water-vapor-selective sensors to enzymatic biofuel cell electrodes but also the designability of macroscopic device configurations for stretchable and wearable applications. This study provides a pathway to realize structurally and functionally designable semiconducting nanomaterials and all-nanocellulose semiconducting technology for diverse electronics.</description><issn>1936-0851</issn><issn>1936-086X</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kUFPFTEUhRsjEUTX7kiXJmagnXba6YbEgAIJosnDxF1zX-cODMy0j3ZG4o7_4D_0l9DHe77gwtVpcr9z2t5DyDvO9jkr-QG45MGHfe4402X9guxwI1TBavXj5eZc8W3yOqUbxipda_WKbItKas5YvUOGi2x32PdTHxLSb7DASGc4dC74ZnJjiPS-G68pUHFML3C8D_GWzsaYR1NECr6hZ2Oiy5Q_D7-_dC4-KWSllxF8KmYOeqTHmLor_4ZstdAnfLvWXfL986fLo9Pi_OvJ2dHH8wKkMmOBIGXLWS3mzuG8FSi5QgZCNRwaI0rHjBSVbmWJ3M11qV3bSqOY4NwJpo3YJYer3MU0H7Bx6McIvV3EboD4ywbo7L8T313bq_DTmlJWQsoc8H4dEMPdhGm0Q5eWawKPYUq2VFVVqdIYndGDFZq_nFLEdnMNZ3ZZkl2XZNclZcfe89dt-L-tZODDCshOexOm6POy_hv3CJHOoVc</recordid><startdate>20220628</startdate><enddate>20220628</enddate><creator>Koga, Hirotaka</creator><creator>Nagashima, Kazuki</creator><creator>Suematsu, Koichi</creator><creator>Takahashi, Tsunaki</creator><creator>Zhu, Luting</creator><creator>Fukushima, Daiki</creator><creator>Huang, Yintong</creator><creator>Nakagawa, Ryo</creator><creator>Liu, Jiangyang</creator><creator>Uetani, Kojiro</creator><creator>Nogi, Masaya</creator><creator>Yanagida, Takeshi</creator><creator>Nishina, Yuta</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2840-8038</orcidid><orcidid>https://orcid.org/0000-0001-6295-1731</orcidid><orcidid>https://orcid.org/0000-0002-6170-447X</orcidid><orcidid>https://orcid.org/0000-0002-4958-1753</orcidid><orcidid>https://orcid.org/0000-0003-4837-5701</orcidid><orcidid>https://orcid.org/0000-0003-0180-816X</orcidid><orcidid>https://orcid.org/0000-0003-3245-6929</orcidid></search><sort><creationdate>20220628</creationdate><title>Nanocellulose Paper Semiconductor with a 3D Network Structure and Its Nano–Micro–Macro Trans-Scale Design</title><author>Koga, Hirotaka ; Nagashima, Kazuki ; Suematsu, Koichi ; Takahashi, Tsunaki ; Zhu, Luting ; Fukushima, Daiki ; Huang, Yintong ; Nakagawa, Ryo ; Liu, Jiangyang ; Uetani, Kojiro ; Nogi, Masaya ; Yanagida, Takeshi ; Nishina, Yuta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a469t-ea44f1083bccebf3e416e0a36d1ad932c094357f42e1cb727cff4960311c30793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koga, Hirotaka</creatorcontrib><creatorcontrib>Nagashima, Kazuki</creatorcontrib><creatorcontrib>Suematsu, Koichi</creatorcontrib><creatorcontrib>Takahashi, Tsunaki</creatorcontrib><creatorcontrib>Zhu, Luting</creatorcontrib><creatorcontrib>Fukushima, Daiki</creatorcontrib><creatorcontrib>Huang, Yintong</creatorcontrib><creatorcontrib>Nakagawa, Ryo</creatorcontrib><creatorcontrib>Liu, Jiangyang</creatorcontrib><creatorcontrib>Uetani, Kojiro</creatorcontrib><creatorcontrib>Nogi, Masaya</creatorcontrib><creatorcontrib>Yanagida, Takeshi</creatorcontrib><creatorcontrib>Nishina, Yuta</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koga, Hirotaka</au><au>Nagashima, Kazuki</au><au>Suematsu, Koichi</au><au>Takahashi, Tsunaki</au><au>Zhu, Luting</au><au>Fukushima, Daiki</au><au>Huang, Yintong</au><au>Nakagawa, Ryo</au><au>Liu, Jiangyang</au><au>Uetani, Kojiro</au><au>Nogi, Masaya</au><au>Yanagida, Takeshi</au><au>Nishina, Yuta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nanocellulose Paper Semiconductor with a 3D Network Structure and Its Nano–Micro–Macro Trans-Scale Design</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2022-06-28</date><risdate>2022</risdate><volume>16</volume><issue>6</issue><spage>8630</spage><epage>8640</epage><pages>8630-8640</pages><issn>1936-0851</issn><issn>1936-086X</issn><eissn>1936-086X</eissn><abstract>Semiconducting nanomaterials with 3D network structures exhibit various fascinating properties such as electrical conduction, high permeability, and large surface areas, which are beneficial for adsorption, separation, and sensing applications. However, research on these materials is substantially restricted by the limited trans-scalability of their structural design and tunability of electrical conductivity. To overcome this challenge, a pyrolyzed cellulose nanofiber paper (CNP) semiconductor with a 3D network structure is proposed. Its nano–micro–macro trans-scale structural design is achieved by a combination of iodine-mediated morphology-retaining pyrolysis with spatially controlled drying of a cellulose nanofiber dispersion and paper-crafting techniques, such as microembossing, origami, and kirigami. The electrical conduction of this semiconductor is widely and systematically tuned, via the temperature-controlled progressive pyrolysis of CNP, from insulating (1012 Ω cm) to quasimetallic (10–2 Ω cm), which considerably exceeds that attained in other previously reported nanomaterials with 3D networks. The pyrolyzed CNP semiconductor provides not only the tailorable functionality for applications ranging from water-vapor-selective sensors to enzymatic biofuel cell electrodes but also the designability of macroscopic device configurations for stretchable and wearable applications. This study provides a pathway to realize structurally and functionally designable semiconducting nanomaterials and all-nanocellulose semiconducting technology for diverse electronics.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>35471008</pmid><doi>10.1021/acsnano.1c10728</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-2840-8038</orcidid><orcidid>https://orcid.org/0000-0001-6295-1731</orcidid><orcidid>https://orcid.org/0000-0002-6170-447X</orcidid><orcidid>https://orcid.org/0000-0002-4958-1753</orcidid><orcidid>https://orcid.org/0000-0003-4837-5701</orcidid><orcidid>https://orcid.org/0000-0003-0180-816X</orcidid><orcidid>https://orcid.org/0000-0003-3245-6929</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2022-06, Vol.16 (6), p.8630-8640
issn 1936-0851
1936-086X
1936-086X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9245344
source American Chemical Society Journals
title Nanocellulose Paper Semiconductor with a 3D Network Structure and Its Nano–Micro–Macro Trans-Scale Design
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T17%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nanocellulose%20Paper%20Semiconductor%20with%20a%203D%20Network%20Structure%20and%20Its%20Nano%E2%80%93Micro%E2%80%93Macro%20Trans-Scale%20Design&rft.jtitle=ACS%20nano&rft.au=Koga,%20Hirotaka&rft.date=2022-06-28&rft.volume=16&rft.issue=6&rft.spage=8630&rft.epage=8640&rft.pages=8630-8640&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.1c10728&rft_dat=%3Cproquest_pubme%3E2655562997%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2655562997&rft_id=info:pmid/35471008&rfr_iscdi=true