Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer

Patients with high-grade serous ovarian cancer suffer poor prognosis and variable response to treatment. Known prognostic factors for this disease include homologous recombination deficiency status, age, pathological stage and residual disease status after debulking surgery. Recent work has highligh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cancer 2022-06, Vol.3 (6), p.723-733
Hauptverfasser: Boehm, Kevin M., Aherne, Emily A., Ellenson, Lora, Nikolovski, Ines, Alghamdi, Mohammed, Vázquez-García, Ignacio, Zamarin, Dmitriy, Long Roche, Kara, Liu, Ying, Patel, Druv, Aukerman, Andrew, Pasha, Arfath, Rose, Doori, Selenica, Pier, Causa Andrieu, Pamela I., Fong, Chris, Capanu, Marinela, Reis-Filho, Jorge S., Vanguri, Rami, Veeraraghavan, Harini, Gangai, Natalie, Sosa, Ramon, Leung, Samantha, McPherson, Andrew, Gao, JianJiong, Lakhman, Yulia, Shah, Sohrab P.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 733
container_issue 6
container_start_page 723
container_title Nature cancer
container_volume 3
creator Boehm, Kevin M.
Aherne, Emily A.
Ellenson, Lora
Nikolovski, Ines
Alghamdi, Mohammed
Vázquez-García, Ignacio
Zamarin, Dmitriy
Long Roche, Kara
Liu, Ying
Patel, Druv
Aukerman, Andrew
Pasha, Arfath
Rose, Doori
Selenica, Pier
Causa Andrieu, Pamela I.
Fong, Chris
Capanu, Marinela
Reis-Filho, Jorge S.
Vanguri, Rami
Veeraraghavan, Harini
Gangai, Natalie
Sosa, Ramon
Leung, Samantha
McPherson, Andrew
Gao, JianJiong
Lakhman, Yulia
Shah, Sohrab P.
description Patients with high-grade serous ovarian cancer suffer poor prognosis and variable response to treatment. Known prognostic factors for this disease include homologous recombination deficiency status, age, pathological stage and residual disease status after debulking surgery. Recent work has highlighted important prognostic information captured in computed tomography and histopathological specimens, which can be exploited through machine learning. However, little is known about the capacity of combining features from these disparate sources to improve prediction of treatment response. Here, we assembled a multimodal dataset of 444 patients with primarily late-stage high-grade serous ovarian cancer and discovered quantitative features, such as tumor nuclear size on staining with hematoxylin and eosin and omental texture on contrast-enhanced computed tomography, associated with prognosis. We found that these features contributed complementary prognostic information relative to one another and clinicogenomic features. By fusing histopathological, radiologic and clinicogenomic machine-learning models, we demonstrate a promising path toward improved risk stratification of patients with cancer through multimodal data integration.
doi_str_mv 10.1038/s43018-022-00388-9
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9239907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682257617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-f0828e2e44ca6f25c4e22aa544fd0f861a51b1bd1cb69f5454b688dbf79857ce3</originalsourceid><addsrcrecordid>eNpVUctO3DAUtSoqQMAPsPKSTaifib1BQqjQSlTdlLV141zPuE3swU5G6t8300FVWd3Xuec-DiHXnN1yJs2nqiTjpmFCNGyNTWM_kHPRtqLhUnUn__ln5KrWn4wxoTnX1pySM6m7VnVKnpP6bRnnOOUBRjrADDSmGTcF5pgTXWpMGzqB38aEdEQo6ZCI067kPVZaYv1F63xAh-iPPTnQbdxsm5VjQFqx5KXSvIcSIVEPyWO5JB8DjBWv3uwFeXn8_OPhS_P8_enrw_1z42Vn5yYwIwwKVMpDG4T2CoUA0EqFgQXTctC85_3Afd_aoJVWfWvM0IfOGt15lBfk7si7W_oJB49pXXV0uxInKL9dhujeV1Lcuk3eOyuktaxbCW7eCEp-XbDOborV4zhCwvUsJ1ojxPpKfoCKI9SXXGvB8G8MZ-4gmDsK5lbB3F_BnJV_AIvHi10</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682257617</pqid></control><display><type>article</type><title>Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer</title><source>SpringerLink Journals</source><creator>Boehm, Kevin M. ; Aherne, Emily A. ; Ellenson, Lora ; Nikolovski, Ines ; Alghamdi, Mohammed ; Vázquez-García, Ignacio ; Zamarin, Dmitriy ; Long Roche, Kara ; Liu, Ying ; Patel, Druv ; Aukerman, Andrew ; Pasha, Arfath ; Rose, Doori ; Selenica, Pier ; Causa Andrieu, Pamela I. ; Fong, Chris ; Capanu, Marinela ; Reis-Filho, Jorge S. ; Vanguri, Rami ; Veeraraghavan, Harini ; Gangai, Natalie ; Sosa, Ramon ; Leung, Samantha ; McPherson, Andrew ; Gao, JianJiong ; Lakhman, Yulia ; Shah, Sohrab P.</creator><creatorcontrib>Boehm, Kevin M. ; Aherne, Emily A. ; Ellenson, Lora ; Nikolovski, Ines ; Alghamdi, Mohammed ; Vázquez-García, Ignacio ; Zamarin, Dmitriy ; Long Roche, Kara ; Liu, Ying ; Patel, Druv ; Aukerman, Andrew ; Pasha, Arfath ; Rose, Doori ; Selenica, Pier ; Causa Andrieu, Pamela I. ; Fong, Chris ; Capanu, Marinela ; Reis-Filho, Jorge S. ; Vanguri, Rami ; Veeraraghavan, Harini ; Gangai, Natalie ; Sosa, Ramon ; Leung, Samantha ; McPherson, Andrew ; Gao, JianJiong ; Lakhman, Yulia ; Shah, Sohrab P. ; MSK MIND Consortium</creatorcontrib><description>Patients with high-grade serous ovarian cancer suffer poor prognosis and variable response to treatment. Known prognostic factors for this disease include homologous recombination deficiency status, age, pathological stage and residual disease status after debulking surgery. Recent work has highlighted important prognostic information captured in computed tomography and histopathological specimens, which can be exploited through machine learning. However, little is known about the capacity of combining features from these disparate sources to improve prediction of treatment response. Here, we assembled a multimodal dataset of 444 patients with primarily late-stage high-grade serous ovarian cancer and discovered quantitative features, such as tumor nuclear size on staining with hematoxylin and eosin and omental texture on contrast-enhanced computed tomography, associated with prognosis. We found that these features contributed complementary prognostic information relative to one another and clinicogenomic features. By fusing histopathological, radiologic and clinicogenomic machine-learning models, we demonstrate a promising path toward improved risk stratification of patients with cancer through multimodal data integration.</description><identifier>ISSN: 2662-1347</identifier><identifier>EISSN: 2662-1347</identifier><identifier>DOI: 10.1038/s43018-022-00388-9</identifier><identifier>PMID: 35764743</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><ispartof>Nature cancer, 2022-06, Vol.3 (6), p.723-733</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-f0828e2e44ca6f25c4e22aa544fd0f861a51b1bd1cb69f5454b688dbf79857ce3</citedby><cites>FETCH-LOGICAL-c379t-f0828e2e44ca6f25c4e22aa544fd0f861a51b1bd1cb69f5454b688dbf79857ce3</cites><orcidid>0000-0003-2426-5436 ; 0000-0003-0342-2922 ; 0000-0003-2969-3173 ; 0000-0001-6402-523X ; 0000-0002-4054-5529 ; 0000-0002-0094-0161 ; 0000-0002-5596-4961 ; 0000-0003-0427-2639 ; 0000-0003-3626-4502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Boehm, Kevin M.</creatorcontrib><creatorcontrib>Aherne, Emily A.</creatorcontrib><creatorcontrib>Ellenson, Lora</creatorcontrib><creatorcontrib>Nikolovski, Ines</creatorcontrib><creatorcontrib>Alghamdi, Mohammed</creatorcontrib><creatorcontrib>Vázquez-García, Ignacio</creatorcontrib><creatorcontrib>Zamarin, Dmitriy</creatorcontrib><creatorcontrib>Long Roche, Kara</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Patel, Druv</creatorcontrib><creatorcontrib>Aukerman, Andrew</creatorcontrib><creatorcontrib>Pasha, Arfath</creatorcontrib><creatorcontrib>Rose, Doori</creatorcontrib><creatorcontrib>Selenica, Pier</creatorcontrib><creatorcontrib>Causa Andrieu, Pamela I.</creatorcontrib><creatorcontrib>Fong, Chris</creatorcontrib><creatorcontrib>Capanu, Marinela</creatorcontrib><creatorcontrib>Reis-Filho, Jorge S.</creatorcontrib><creatorcontrib>Vanguri, Rami</creatorcontrib><creatorcontrib>Veeraraghavan, Harini</creatorcontrib><creatorcontrib>Gangai, Natalie</creatorcontrib><creatorcontrib>Sosa, Ramon</creatorcontrib><creatorcontrib>Leung, Samantha</creatorcontrib><creatorcontrib>McPherson, Andrew</creatorcontrib><creatorcontrib>Gao, JianJiong</creatorcontrib><creatorcontrib>Lakhman, Yulia</creatorcontrib><creatorcontrib>Shah, Sohrab P.</creatorcontrib><creatorcontrib>MSK MIND Consortium</creatorcontrib><title>Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer</title><title>Nature cancer</title><description>Patients with high-grade serous ovarian cancer suffer poor prognosis and variable response to treatment. Known prognostic factors for this disease include homologous recombination deficiency status, age, pathological stage and residual disease status after debulking surgery. Recent work has highlighted important prognostic information captured in computed tomography and histopathological specimens, which can be exploited through machine learning. However, little is known about the capacity of combining features from these disparate sources to improve prediction of treatment response. Here, we assembled a multimodal dataset of 444 patients with primarily late-stage high-grade serous ovarian cancer and discovered quantitative features, such as tumor nuclear size on staining with hematoxylin and eosin and omental texture on contrast-enhanced computed tomography, associated with prognosis. We found that these features contributed complementary prognostic information relative to one another and clinicogenomic features. By fusing histopathological, radiologic and clinicogenomic machine-learning models, we demonstrate a promising path toward improved risk stratification of patients with cancer through multimodal data integration.</description><issn>2662-1347</issn><issn>2662-1347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVUctO3DAUtSoqQMAPsPKSTaifib1BQqjQSlTdlLV141zPuE3swU5G6t8300FVWd3Xuec-DiHXnN1yJs2nqiTjpmFCNGyNTWM_kHPRtqLhUnUn__ln5KrWn4wxoTnX1pySM6m7VnVKnpP6bRnnOOUBRjrADDSmGTcF5pgTXWpMGzqB38aEdEQo6ZCI067kPVZaYv1F63xAh-iPPTnQbdxsm5VjQFqx5KXSvIcSIVEPyWO5JB8DjBWv3uwFeXn8_OPhS_P8_enrw_1z42Vn5yYwIwwKVMpDG4T2CoUA0EqFgQXTctC85_3Afd_aoJVWfWvM0IfOGt15lBfk7si7W_oJB49pXXV0uxInKL9dhujeV1Lcuk3eOyuktaxbCW7eCEp-XbDOborV4zhCwvUsJ1ojxPpKfoCKI9SXXGvB8G8MZ-4gmDsK5lbB3F_BnJV_AIvHi10</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Boehm, Kevin M.</creator><creator>Aherne, Emily A.</creator><creator>Ellenson, Lora</creator><creator>Nikolovski, Ines</creator><creator>Alghamdi, Mohammed</creator><creator>Vázquez-García, Ignacio</creator><creator>Zamarin, Dmitriy</creator><creator>Long Roche, Kara</creator><creator>Liu, Ying</creator><creator>Patel, Druv</creator><creator>Aukerman, Andrew</creator><creator>Pasha, Arfath</creator><creator>Rose, Doori</creator><creator>Selenica, Pier</creator><creator>Causa Andrieu, Pamela I.</creator><creator>Fong, Chris</creator><creator>Capanu, Marinela</creator><creator>Reis-Filho, Jorge S.</creator><creator>Vanguri, Rami</creator><creator>Veeraraghavan, Harini</creator><creator>Gangai, Natalie</creator><creator>Sosa, Ramon</creator><creator>Leung, Samantha</creator><creator>McPherson, Andrew</creator><creator>Gao, JianJiong</creator><creator>Lakhman, Yulia</creator><creator>Shah, Sohrab P.</creator><general>Nature Publishing Group US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2426-5436</orcidid><orcidid>https://orcid.org/0000-0003-0342-2922</orcidid><orcidid>https://orcid.org/0000-0003-2969-3173</orcidid><orcidid>https://orcid.org/0000-0001-6402-523X</orcidid><orcidid>https://orcid.org/0000-0002-4054-5529</orcidid><orcidid>https://orcid.org/0000-0002-0094-0161</orcidid><orcidid>https://orcid.org/0000-0002-5596-4961</orcidid><orcidid>https://orcid.org/0000-0003-0427-2639</orcidid><orcidid>https://orcid.org/0000-0003-3626-4502</orcidid></search><sort><creationdate>20220601</creationdate><title>Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer</title><author>Boehm, Kevin M. ; Aherne, Emily A. ; Ellenson, Lora ; Nikolovski, Ines ; Alghamdi, Mohammed ; Vázquez-García, Ignacio ; Zamarin, Dmitriy ; Long Roche, Kara ; Liu, Ying ; Patel, Druv ; Aukerman, Andrew ; Pasha, Arfath ; Rose, Doori ; Selenica, Pier ; Causa Andrieu, Pamela I. ; Fong, Chris ; Capanu, Marinela ; Reis-Filho, Jorge S. ; Vanguri, Rami ; Veeraraghavan, Harini ; Gangai, Natalie ; Sosa, Ramon ; Leung, Samantha ; McPherson, Andrew ; Gao, JianJiong ; Lakhman, Yulia ; Shah, Sohrab P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-f0828e2e44ca6f25c4e22aa544fd0f861a51b1bd1cb69f5454b688dbf79857ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boehm, Kevin M.</creatorcontrib><creatorcontrib>Aherne, Emily A.</creatorcontrib><creatorcontrib>Ellenson, Lora</creatorcontrib><creatorcontrib>Nikolovski, Ines</creatorcontrib><creatorcontrib>Alghamdi, Mohammed</creatorcontrib><creatorcontrib>Vázquez-García, Ignacio</creatorcontrib><creatorcontrib>Zamarin, Dmitriy</creatorcontrib><creatorcontrib>Long Roche, Kara</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Patel, Druv</creatorcontrib><creatorcontrib>Aukerman, Andrew</creatorcontrib><creatorcontrib>Pasha, Arfath</creatorcontrib><creatorcontrib>Rose, Doori</creatorcontrib><creatorcontrib>Selenica, Pier</creatorcontrib><creatorcontrib>Causa Andrieu, Pamela I.</creatorcontrib><creatorcontrib>Fong, Chris</creatorcontrib><creatorcontrib>Capanu, Marinela</creatorcontrib><creatorcontrib>Reis-Filho, Jorge S.</creatorcontrib><creatorcontrib>Vanguri, Rami</creatorcontrib><creatorcontrib>Veeraraghavan, Harini</creatorcontrib><creatorcontrib>Gangai, Natalie</creatorcontrib><creatorcontrib>Sosa, Ramon</creatorcontrib><creatorcontrib>Leung, Samantha</creatorcontrib><creatorcontrib>McPherson, Andrew</creatorcontrib><creatorcontrib>Gao, JianJiong</creatorcontrib><creatorcontrib>Lakhman, Yulia</creatorcontrib><creatorcontrib>Shah, Sohrab P.</creatorcontrib><creatorcontrib>MSK MIND Consortium</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boehm, Kevin M.</au><au>Aherne, Emily A.</au><au>Ellenson, Lora</au><au>Nikolovski, Ines</au><au>Alghamdi, Mohammed</au><au>Vázquez-García, Ignacio</au><au>Zamarin, Dmitriy</au><au>Long Roche, Kara</au><au>Liu, Ying</au><au>Patel, Druv</au><au>Aukerman, Andrew</au><au>Pasha, Arfath</au><au>Rose, Doori</au><au>Selenica, Pier</au><au>Causa Andrieu, Pamela I.</au><au>Fong, Chris</au><au>Capanu, Marinela</au><au>Reis-Filho, Jorge S.</au><au>Vanguri, Rami</au><au>Veeraraghavan, Harini</au><au>Gangai, Natalie</au><au>Sosa, Ramon</au><au>Leung, Samantha</au><au>McPherson, Andrew</au><au>Gao, JianJiong</au><au>Lakhman, Yulia</au><au>Shah, Sohrab P.</au><aucorp>MSK MIND Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer</atitle><jtitle>Nature cancer</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>3</volume><issue>6</issue><spage>723</spage><epage>733</epage><pages>723-733</pages><issn>2662-1347</issn><eissn>2662-1347</eissn><abstract>Patients with high-grade serous ovarian cancer suffer poor prognosis and variable response to treatment. Known prognostic factors for this disease include homologous recombination deficiency status, age, pathological stage and residual disease status after debulking surgery. Recent work has highlighted important prognostic information captured in computed tomography and histopathological specimens, which can be exploited through machine learning. However, little is known about the capacity of combining features from these disparate sources to improve prediction of treatment response. Here, we assembled a multimodal dataset of 444 patients with primarily late-stage high-grade serous ovarian cancer and discovered quantitative features, such as tumor nuclear size on staining with hematoxylin and eosin and omental texture on contrast-enhanced computed tomography, associated with prognosis. We found that these features contributed complementary prognostic information relative to one another and clinicogenomic features. By fusing histopathological, radiologic and clinicogenomic machine-learning models, we demonstrate a promising path toward improved risk stratification of patients with cancer through multimodal data integration.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>35764743</pmid><doi>10.1038/s43018-022-00388-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2426-5436</orcidid><orcidid>https://orcid.org/0000-0003-0342-2922</orcidid><orcidid>https://orcid.org/0000-0003-2969-3173</orcidid><orcidid>https://orcid.org/0000-0001-6402-523X</orcidid><orcidid>https://orcid.org/0000-0002-4054-5529</orcidid><orcidid>https://orcid.org/0000-0002-0094-0161</orcidid><orcidid>https://orcid.org/0000-0002-5596-4961</orcidid><orcidid>https://orcid.org/0000-0003-0427-2639</orcidid><orcidid>https://orcid.org/0000-0003-3626-4502</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2662-1347
ispartof Nature cancer, 2022-06, Vol.3 (6), p.723-733
issn 2662-1347
2662-1347
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9239907
source SpringerLink Journals
title Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T08%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20data%20integration%20using%20machine%20learning%20improves%20risk%20stratification%20of%20high-grade%20serous%20ovarian%20cancer&rft.jtitle=Nature%20cancer&rft.au=Boehm,%20Kevin%20M.&rft.aucorp=MSK%20MIND%20Consortium&rft.date=2022-06-01&rft.volume=3&rft.issue=6&rft.spage=723&rft.epage=733&rft.pages=723-733&rft.issn=2662-1347&rft.eissn=2662-1347&rft_id=info:doi/10.1038/s43018-022-00388-9&rft_dat=%3Cproquest_pubme%3E2682257617%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682257617&rft_id=info:pmid/35764743&rfr_iscdi=true