Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer
Patients with high-grade serous ovarian cancer suffer poor prognosis and variable response to treatment. Known prognostic factors for this disease include homologous recombination deficiency status, age, pathological stage and residual disease status after debulking surgery. Recent work has highligh...
Gespeichert in:
Veröffentlicht in: | Nature cancer 2022-06, Vol.3 (6), p.723-733 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 733 |
---|---|
container_issue | 6 |
container_start_page | 723 |
container_title | Nature cancer |
container_volume | 3 |
creator | Boehm, Kevin M. Aherne, Emily A. Ellenson, Lora Nikolovski, Ines Alghamdi, Mohammed Vázquez-García, Ignacio Zamarin, Dmitriy Long Roche, Kara Liu, Ying Patel, Druv Aukerman, Andrew Pasha, Arfath Rose, Doori Selenica, Pier Causa Andrieu, Pamela I. Fong, Chris Capanu, Marinela Reis-Filho, Jorge S. Vanguri, Rami Veeraraghavan, Harini Gangai, Natalie Sosa, Ramon Leung, Samantha McPherson, Andrew Gao, JianJiong Lakhman, Yulia Shah, Sohrab P. |
description | Patients with high-grade serous ovarian cancer suffer poor prognosis and variable response to treatment. Known prognostic factors for this disease include homologous recombination deficiency status, age, pathological stage and residual disease status after debulking surgery. Recent work has highlighted important prognostic information captured in computed tomography and histopathological specimens, which can be exploited through machine learning. However, little is known about the capacity of combining features from these disparate sources to improve prediction of treatment response. Here, we assembled a multimodal dataset of 444 patients with primarily late-stage high-grade serous ovarian cancer and discovered quantitative features, such as tumor nuclear size on staining with hematoxylin and eosin and omental texture on contrast-enhanced computed tomography, associated with prognosis. We found that these features contributed complementary prognostic information relative to one another and clinicogenomic features. By fusing histopathological, radiologic and clinicogenomic machine-learning models, we demonstrate a promising path toward improved risk stratification of patients with cancer through multimodal data integration. |
doi_str_mv | 10.1038/s43018-022-00388-9 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9239907</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2682257617</sourcerecordid><originalsourceid>FETCH-LOGICAL-c379t-f0828e2e44ca6f25c4e22aa544fd0f861a51b1bd1cb69f5454b688dbf79857ce3</originalsourceid><addsrcrecordid>eNpVUctO3DAUtSoqQMAPsPKSTaifib1BQqjQSlTdlLV141zPuE3swU5G6t8300FVWd3Xuec-DiHXnN1yJs2nqiTjpmFCNGyNTWM_kHPRtqLhUnUn__ln5KrWn4wxoTnX1pySM6m7VnVKnpP6bRnnOOUBRjrADDSmGTcF5pgTXWpMGzqB38aEdEQo6ZCI067kPVZaYv1F63xAh-iPPTnQbdxsm5VjQFqx5KXSvIcSIVEPyWO5JB8DjBWv3uwFeXn8_OPhS_P8_enrw_1z42Vn5yYwIwwKVMpDG4T2CoUA0EqFgQXTctC85_3Afd_aoJVWfWvM0IfOGt15lBfk7si7W_oJB49pXXV0uxInKL9dhujeV1Lcuk3eOyuktaxbCW7eCEp-XbDOborV4zhCwvUsJ1ojxPpKfoCKI9SXXGvB8G8MZ-4gmDsK5lbB3F_BnJV_AIvHi10</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2682257617</pqid></control><display><type>article</type><title>Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer</title><source>SpringerLink Journals</source><creator>Boehm, Kevin M. ; Aherne, Emily A. ; Ellenson, Lora ; Nikolovski, Ines ; Alghamdi, Mohammed ; Vázquez-García, Ignacio ; Zamarin, Dmitriy ; Long Roche, Kara ; Liu, Ying ; Patel, Druv ; Aukerman, Andrew ; Pasha, Arfath ; Rose, Doori ; Selenica, Pier ; Causa Andrieu, Pamela I. ; Fong, Chris ; Capanu, Marinela ; Reis-Filho, Jorge S. ; Vanguri, Rami ; Veeraraghavan, Harini ; Gangai, Natalie ; Sosa, Ramon ; Leung, Samantha ; McPherson, Andrew ; Gao, JianJiong ; Lakhman, Yulia ; Shah, Sohrab P.</creator><creatorcontrib>Boehm, Kevin M. ; Aherne, Emily A. ; Ellenson, Lora ; Nikolovski, Ines ; Alghamdi, Mohammed ; Vázquez-García, Ignacio ; Zamarin, Dmitriy ; Long Roche, Kara ; Liu, Ying ; Patel, Druv ; Aukerman, Andrew ; Pasha, Arfath ; Rose, Doori ; Selenica, Pier ; Causa Andrieu, Pamela I. ; Fong, Chris ; Capanu, Marinela ; Reis-Filho, Jorge S. ; Vanguri, Rami ; Veeraraghavan, Harini ; Gangai, Natalie ; Sosa, Ramon ; Leung, Samantha ; McPherson, Andrew ; Gao, JianJiong ; Lakhman, Yulia ; Shah, Sohrab P. ; MSK MIND Consortium</creatorcontrib><description>Patients with high-grade serous ovarian cancer suffer poor prognosis and variable response to treatment. Known prognostic factors for this disease include homologous recombination deficiency status, age, pathological stage and residual disease status after debulking surgery. Recent work has highlighted important prognostic information captured in computed tomography and histopathological specimens, which can be exploited through machine learning. However, little is known about the capacity of combining features from these disparate sources to improve prediction of treatment response. Here, we assembled a multimodal dataset of 444 patients with primarily late-stage high-grade serous ovarian cancer and discovered quantitative features, such as tumor nuclear size on staining with hematoxylin and eosin and omental texture on contrast-enhanced computed tomography, associated with prognosis. We found that these features contributed complementary prognostic information relative to one another and clinicogenomic features. By fusing histopathological, radiologic and clinicogenomic machine-learning models, we demonstrate a promising path toward improved risk stratification of patients with cancer through multimodal data integration.</description><identifier>ISSN: 2662-1347</identifier><identifier>EISSN: 2662-1347</identifier><identifier>DOI: 10.1038/s43018-022-00388-9</identifier><identifier>PMID: 35764743</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><ispartof>Nature cancer, 2022-06, Vol.3 (6), p.723-733</ispartof><rights>The Author(s) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c379t-f0828e2e44ca6f25c4e22aa544fd0f861a51b1bd1cb69f5454b688dbf79857ce3</citedby><cites>FETCH-LOGICAL-c379t-f0828e2e44ca6f25c4e22aa544fd0f861a51b1bd1cb69f5454b688dbf79857ce3</cites><orcidid>0000-0003-2426-5436 ; 0000-0003-0342-2922 ; 0000-0003-2969-3173 ; 0000-0001-6402-523X ; 0000-0002-4054-5529 ; 0000-0002-0094-0161 ; 0000-0002-5596-4961 ; 0000-0003-0427-2639 ; 0000-0003-3626-4502</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids></links><search><creatorcontrib>Boehm, Kevin M.</creatorcontrib><creatorcontrib>Aherne, Emily A.</creatorcontrib><creatorcontrib>Ellenson, Lora</creatorcontrib><creatorcontrib>Nikolovski, Ines</creatorcontrib><creatorcontrib>Alghamdi, Mohammed</creatorcontrib><creatorcontrib>Vázquez-García, Ignacio</creatorcontrib><creatorcontrib>Zamarin, Dmitriy</creatorcontrib><creatorcontrib>Long Roche, Kara</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Patel, Druv</creatorcontrib><creatorcontrib>Aukerman, Andrew</creatorcontrib><creatorcontrib>Pasha, Arfath</creatorcontrib><creatorcontrib>Rose, Doori</creatorcontrib><creatorcontrib>Selenica, Pier</creatorcontrib><creatorcontrib>Causa Andrieu, Pamela I.</creatorcontrib><creatorcontrib>Fong, Chris</creatorcontrib><creatorcontrib>Capanu, Marinela</creatorcontrib><creatorcontrib>Reis-Filho, Jorge S.</creatorcontrib><creatorcontrib>Vanguri, Rami</creatorcontrib><creatorcontrib>Veeraraghavan, Harini</creatorcontrib><creatorcontrib>Gangai, Natalie</creatorcontrib><creatorcontrib>Sosa, Ramon</creatorcontrib><creatorcontrib>Leung, Samantha</creatorcontrib><creatorcontrib>McPherson, Andrew</creatorcontrib><creatorcontrib>Gao, JianJiong</creatorcontrib><creatorcontrib>Lakhman, Yulia</creatorcontrib><creatorcontrib>Shah, Sohrab P.</creatorcontrib><creatorcontrib>MSK MIND Consortium</creatorcontrib><title>Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer</title><title>Nature cancer</title><description>Patients with high-grade serous ovarian cancer suffer poor prognosis and variable response to treatment. Known prognostic factors for this disease include homologous recombination deficiency status, age, pathological stage and residual disease status after debulking surgery. Recent work has highlighted important prognostic information captured in computed tomography and histopathological specimens, which can be exploited through machine learning. However, little is known about the capacity of combining features from these disparate sources to improve prediction of treatment response. Here, we assembled a multimodal dataset of 444 patients with primarily late-stage high-grade serous ovarian cancer and discovered quantitative features, such as tumor nuclear size on staining with hematoxylin and eosin and omental texture on contrast-enhanced computed tomography, associated with prognosis. We found that these features contributed complementary prognostic information relative to one another and clinicogenomic features. By fusing histopathological, radiologic and clinicogenomic machine-learning models, we demonstrate a promising path toward improved risk stratification of patients with cancer through multimodal data integration.</description><issn>2662-1347</issn><issn>2662-1347</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpVUctO3DAUtSoqQMAPsPKSTaifib1BQqjQSlTdlLV141zPuE3swU5G6t8300FVWd3Xuec-DiHXnN1yJs2nqiTjpmFCNGyNTWM_kHPRtqLhUnUn__ln5KrWn4wxoTnX1pySM6m7VnVKnpP6bRnnOOUBRjrADDSmGTcF5pgTXWpMGzqB38aEdEQo6ZCI067kPVZaYv1F63xAh-iPPTnQbdxsm5VjQFqx5KXSvIcSIVEPyWO5JB8DjBWv3uwFeXn8_OPhS_P8_enrw_1z42Vn5yYwIwwKVMpDG4T2CoUA0EqFgQXTctC85_3Afd_aoJVWfWvM0IfOGt15lBfk7si7W_oJB49pXXV0uxInKL9dhujeV1Lcuk3eOyuktaxbCW7eCEp-XbDOborV4zhCwvUsJ1ojxPpKfoCKI9SXXGvB8G8MZ-4gmDsK5lbB3F_BnJV_AIvHi10</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Boehm, Kevin M.</creator><creator>Aherne, Emily A.</creator><creator>Ellenson, Lora</creator><creator>Nikolovski, Ines</creator><creator>Alghamdi, Mohammed</creator><creator>Vázquez-García, Ignacio</creator><creator>Zamarin, Dmitriy</creator><creator>Long Roche, Kara</creator><creator>Liu, Ying</creator><creator>Patel, Druv</creator><creator>Aukerman, Andrew</creator><creator>Pasha, Arfath</creator><creator>Rose, Doori</creator><creator>Selenica, Pier</creator><creator>Causa Andrieu, Pamela I.</creator><creator>Fong, Chris</creator><creator>Capanu, Marinela</creator><creator>Reis-Filho, Jorge S.</creator><creator>Vanguri, Rami</creator><creator>Veeraraghavan, Harini</creator><creator>Gangai, Natalie</creator><creator>Sosa, Ramon</creator><creator>Leung, Samantha</creator><creator>McPherson, Andrew</creator><creator>Gao, JianJiong</creator><creator>Lakhman, Yulia</creator><creator>Shah, Sohrab P.</creator><general>Nature Publishing Group US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-2426-5436</orcidid><orcidid>https://orcid.org/0000-0003-0342-2922</orcidid><orcidid>https://orcid.org/0000-0003-2969-3173</orcidid><orcidid>https://orcid.org/0000-0001-6402-523X</orcidid><orcidid>https://orcid.org/0000-0002-4054-5529</orcidid><orcidid>https://orcid.org/0000-0002-0094-0161</orcidid><orcidid>https://orcid.org/0000-0002-5596-4961</orcidid><orcidid>https://orcid.org/0000-0003-0427-2639</orcidid><orcidid>https://orcid.org/0000-0003-3626-4502</orcidid></search><sort><creationdate>20220601</creationdate><title>Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer</title><author>Boehm, Kevin M. ; Aherne, Emily A. ; Ellenson, Lora ; Nikolovski, Ines ; Alghamdi, Mohammed ; Vázquez-García, Ignacio ; Zamarin, Dmitriy ; Long Roche, Kara ; Liu, Ying ; Patel, Druv ; Aukerman, Andrew ; Pasha, Arfath ; Rose, Doori ; Selenica, Pier ; Causa Andrieu, Pamela I. ; Fong, Chris ; Capanu, Marinela ; Reis-Filho, Jorge S. ; Vanguri, Rami ; Veeraraghavan, Harini ; Gangai, Natalie ; Sosa, Ramon ; Leung, Samantha ; McPherson, Andrew ; Gao, JianJiong ; Lakhman, Yulia ; Shah, Sohrab P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c379t-f0828e2e44ca6f25c4e22aa544fd0f861a51b1bd1cb69f5454b688dbf79857ce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boehm, Kevin M.</creatorcontrib><creatorcontrib>Aherne, Emily A.</creatorcontrib><creatorcontrib>Ellenson, Lora</creatorcontrib><creatorcontrib>Nikolovski, Ines</creatorcontrib><creatorcontrib>Alghamdi, Mohammed</creatorcontrib><creatorcontrib>Vázquez-García, Ignacio</creatorcontrib><creatorcontrib>Zamarin, Dmitriy</creatorcontrib><creatorcontrib>Long Roche, Kara</creatorcontrib><creatorcontrib>Liu, Ying</creatorcontrib><creatorcontrib>Patel, Druv</creatorcontrib><creatorcontrib>Aukerman, Andrew</creatorcontrib><creatorcontrib>Pasha, Arfath</creatorcontrib><creatorcontrib>Rose, Doori</creatorcontrib><creatorcontrib>Selenica, Pier</creatorcontrib><creatorcontrib>Causa Andrieu, Pamela I.</creatorcontrib><creatorcontrib>Fong, Chris</creatorcontrib><creatorcontrib>Capanu, Marinela</creatorcontrib><creatorcontrib>Reis-Filho, Jorge S.</creatorcontrib><creatorcontrib>Vanguri, Rami</creatorcontrib><creatorcontrib>Veeraraghavan, Harini</creatorcontrib><creatorcontrib>Gangai, Natalie</creatorcontrib><creatorcontrib>Sosa, Ramon</creatorcontrib><creatorcontrib>Leung, Samantha</creatorcontrib><creatorcontrib>McPherson, Andrew</creatorcontrib><creatorcontrib>Gao, JianJiong</creatorcontrib><creatorcontrib>Lakhman, Yulia</creatorcontrib><creatorcontrib>Shah, Sohrab P.</creatorcontrib><creatorcontrib>MSK MIND Consortium</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cancer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boehm, Kevin M.</au><au>Aherne, Emily A.</au><au>Ellenson, Lora</au><au>Nikolovski, Ines</au><au>Alghamdi, Mohammed</au><au>Vázquez-García, Ignacio</au><au>Zamarin, Dmitriy</au><au>Long Roche, Kara</au><au>Liu, Ying</au><au>Patel, Druv</au><au>Aukerman, Andrew</au><au>Pasha, Arfath</au><au>Rose, Doori</au><au>Selenica, Pier</au><au>Causa Andrieu, Pamela I.</au><au>Fong, Chris</au><au>Capanu, Marinela</au><au>Reis-Filho, Jorge S.</au><au>Vanguri, Rami</au><au>Veeraraghavan, Harini</au><au>Gangai, Natalie</au><au>Sosa, Ramon</au><au>Leung, Samantha</au><au>McPherson, Andrew</au><au>Gao, JianJiong</au><au>Lakhman, Yulia</au><au>Shah, Sohrab P.</au><aucorp>MSK MIND Consortium</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer</atitle><jtitle>Nature cancer</jtitle><date>2022-06-01</date><risdate>2022</risdate><volume>3</volume><issue>6</issue><spage>723</spage><epage>733</epage><pages>723-733</pages><issn>2662-1347</issn><eissn>2662-1347</eissn><abstract>Patients with high-grade serous ovarian cancer suffer poor prognosis and variable response to treatment. Known prognostic factors for this disease include homologous recombination deficiency status, age, pathological stage and residual disease status after debulking surgery. Recent work has highlighted important prognostic information captured in computed tomography and histopathological specimens, which can be exploited through machine learning. However, little is known about the capacity of combining features from these disparate sources to improve prediction of treatment response. Here, we assembled a multimodal dataset of 444 patients with primarily late-stage high-grade serous ovarian cancer and discovered quantitative features, such as tumor nuclear size on staining with hematoxylin and eosin and omental texture on contrast-enhanced computed tomography, associated with prognosis. We found that these features contributed complementary prognostic information relative to one another and clinicogenomic features. By fusing histopathological, radiologic and clinicogenomic machine-learning models, we demonstrate a promising path toward improved risk stratification of patients with cancer through multimodal data integration.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>35764743</pmid><doi>10.1038/s43018-022-00388-9</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-2426-5436</orcidid><orcidid>https://orcid.org/0000-0003-0342-2922</orcidid><orcidid>https://orcid.org/0000-0003-2969-3173</orcidid><orcidid>https://orcid.org/0000-0001-6402-523X</orcidid><orcidid>https://orcid.org/0000-0002-4054-5529</orcidid><orcidid>https://orcid.org/0000-0002-0094-0161</orcidid><orcidid>https://orcid.org/0000-0002-5596-4961</orcidid><orcidid>https://orcid.org/0000-0003-0427-2639</orcidid><orcidid>https://orcid.org/0000-0003-3626-4502</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2662-1347 |
ispartof | Nature cancer, 2022-06, Vol.3 (6), p.723-733 |
issn | 2662-1347 2662-1347 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9239907 |
source | SpringerLink Journals |
title | Multimodal data integration using machine learning improves risk stratification of high-grade serous ovarian cancer |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T08%3A35%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multimodal%20data%20integration%20using%20machine%20learning%20improves%20risk%20stratification%20of%20high-grade%20serous%20ovarian%20cancer&rft.jtitle=Nature%20cancer&rft.au=Boehm,%20Kevin%20M.&rft.aucorp=MSK%20MIND%20Consortium&rft.date=2022-06-01&rft.volume=3&rft.issue=6&rft.spage=723&rft.epage=733&rft.pages=723-733&rft.issn=2662-1347&rft.eissn=2662-1347&rft_id=info:doi/10.1038/s43018-022-00388-9&rft_dat=%3Cproquest_pubme%3E2682257617%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2682257617&rft_id=info:pmid/35764743&rfr_iscdi=true |