β-Cell Succinate Dehydrogenase Deficiency Triggers Metabolic Dysfunction and Insulinopenic Diabetes

Mitochondrial dysfunction plays a central role in type 2 diabetes (T2D); however, the pathogenic mechanisms in pancreatic β-cells are incompletely elucidated. Succinate dehydrogenase (SDH) is a key mitochondrial enzyme with dual functions in the tricarboxylic acid cycle and electron transport chain....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Diabetes (New York, N.Y.) N.Y.), 2022-07, Vol.71 (7), p.1439-1453
Hauptverfasser: Lee, Sooyeon, Xu, Haixia, Van Vleck, Aidan, Mawla, Alex M, Li, Albert Mao, Ye, Jiangbin, Huising, Mark O, Annes, Justin P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1453
container_issue 7
container_start_page 1439
container_title Diabetes (New York, N.Y.)
container_volume 71
creator Lee, Sooyeon
Xu, Haixia
Van Vleck, Aidan
Mawla, Alex M
Li, Albert Mao
Ye, Jiangbin
Huising, Mark O
Annes, Justin P
description Mitochondrial dysfunction plays a central role in type 2 diabetes (T2D); however, the pathogenic mechanisms in pancreatic β-cells are incompletely elucidated. Succinate dehydrogenase (SDH) is a key mitochondrial enzyme with dual functions in the tricarboxylic acid cycle and electron transport chain. Using samples from human with diabetes and a mouse model of β-cell-specific SDH ablation (SDHBβKO), we define SDH deficiency as a driver of mitochondrial dysfunction in β-cell failure and insulinopenic diabetes. β-Cell SDH deficiency impairs glucose-induced respiratory oxidative phosphorylation and mitochondrial membrane potential collapse, thereby compromising glucose-stimulated ATP production, insulin secretion, and β-cell growth. Mechanistically, metabolomic and transcriptomic studies reveal that the loss of SDH causes excess succinate accumulation, which inappropriately activates mammalian target of rapamycin (mTOR) complex 1-regulated metabolic anabolism, including increased SREBP-regulated lipid synthesis. These alterations, which mirror diabetes-associated human β-cell dysfunction, are partially reversed by acute mTOR inhibition with rapamycin. We propose SDH deficiency as a contributing mechanism to the progressive β-cell failure of diabetes and identify mTOR complex 1 inhibition as a potential mitigation strategy.
doi_str_mv 10.2337/db21-0834
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9233299</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681900558</sourcerecordid><originalsourceid>FETCH-LOGICAL-c403t-3c96acc364313e913dbbbed60941ec211b8c9c65d30c4bf79e03cabe335e81fb3</originalsourceid><addsrcrecordid>eNpdkclqHDEQhoVJsCdODn6B0JBLcuhEUvWmiyGMsxgcfLADuQmpunos0yNNpO7AvFYeJM8UNV6IQx2Koj7-Wn7GTgR_LwHaD72VouQdVAdsJRSoEmT74xlbcS5kKVrVHrEXKd1yzpsch-wI6qqVrYQV6__8Ltc0jsXVjOi8mag4o5t9H8OGvElLNTh05HFfXEe32VBMxTeajA2jw-Jsn4bZ4-SCL4zvi3Of5tH5sCO_dJ2xNFF6yZ4PZkz06j4fs--fP12vv5YXl1_O1x8vSqw4TCWgagwiNBUIICWgt9ZS33BVCUIphO1QYVP3wLGyQ6uIA-YJADV1YrBwzE7vdHez3VKP5KdoRr2LbmviXgfj9NOOdzd6E35pld8olcoCb-8FYvg5U5r01iXM7zGewpy0bOpGct7WMqNv_kNvwxx9Pi9TnVCc13WXqXd3FMaQUqThcRnB9eKdXrzTi3eZff3v9o_kg1nwFw-Nlw4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2681900558</pqid></control><display><type>article</type><title>β-Cell Succinate Dehydrogenase Deficiency Triggers Metabolic Dysfunction and Insulinopenic Diabetes</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Lee, Sooyeon ; Xu, Haixia ; Van Vleck, Aidan ; Mawla, Alex M ; Li, Albert Mao ; Ye, Jiangbin ; Huising, Mark O ; Annes, Justin P</creator><creatorcontrib>Lee, Sooyeon ; Xu, Haixia ; Van Vleck, Aidan ; Mawla, Alex M ; Li, Albert Mao ; Ye, Jiangbin ; Huising, Mark O ; Annes, Justin P</creatorcontrib><description>Mitochondrial dysfunction plays a central role in type 2 diabetes (T2D); however, the pathogenic mechanisms in pancreatic β-cells are incompletely elucidated. Succinate dehydrogenase (SDH) is a key mitochondrial enzyme with dual functions in the tricarboxylic acid cycle and electron transport chain. Using samples from human with diabetes and a mouse model of β-cell-specific SDH ablation (SDHBβKO), we define SDH deficiency as a driver of mitochondrial dysfunction in β-cell failure and insulinopenic diabetes. β-Cell SDH deficiency impairs glucose-induced respiratory oxidative phosphorylation and mitochondrial membrane potential collapse, thereby compromising glucose-stimulated ATP production, insulin secretion, and β-cell growth. Mechanistically, metabolomic and transcriptomic studies reveal that the loss of SDH causes excess succinate accumulation, which inappropriately activates mammalian target of rapamycin (mTOR) complex 1-regulated metabolic anabolism, including increased SREBP-regulated lipid synthesis. These alterations, which mirror diabetes-associated human β-cell dysfunction, are partially reversed by acute mTOR inhibition with rapamycin. We propose SDH deficiency as a contributing mechanism to the progressive β-cell failure of diabetes and identify mTOR complex 1 inhibition as a potential mitigation strategy.</description><identifier>ISSN: 0012-1797</identifier><identifier>EISSN: 1939-327X</identifier><identifier>DOI: 10.2337/db21-0834</identifier><identifier>PMID: 35472723</identifier><language>eng</language><publisher>United States: American Diabetes Association</publisher><subject>Animals ; Beta cells ; Dehydrogenases ; Diabetes ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - metabolism ; Electron transport chain ; Electron Transport Complex II - deficiency ; Glucose - metabolism ; Insulin ; Insulin secretion ; Insulin-Secreting Cells ; Islet Studies ; Membrane potential ; Metabolism ; Metabolism, Inborn Errors ; Metabolomics ; Mice ; Mitochondria ; Mitochondrial Diseases ; Oxidative phosphorylation ; Phosphorylation ; Rapamycin ; Sterol regulatory element-binding protein ; Succinate dehydrogenase ; Succinate Dehydrogenase - deficiency ; Succinate Dehydrogenase - genetics ; TOR protein ; TOR Serine-Threonine Kinases - metabolism ; Transcriptomics ; Tricarboxylic acid cycle</subject><ispartof>Diabetes (New York, N.Y.), 2022-07, Vol.71 (7), p.1439-1453</ispartof><rights>2022 by the American Diabetes Association.</rights><rights>Copyright American Diabetes Association Jul 2022</rights><rights>2022 by the American Diabetes Association 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c403t-3c96acc364313e913dbbbed60941ec211b8c9c65d30c4bf79e03cabe335e81fb3</citedby><cites>FETCH-LOGICAL-c403t-3c96acc364313e913dbbbed60941ec211b8c9c65d30c4bf79e03cabe335e81fb3</cites><orcidid>0000-0001-8431-3589 ; 0000-0002-6594-2205 ; 0000-0002-1076-3314</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233299/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9233299/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,725,778,782,883,27907,27908,53774,53776</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35472723$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Sooyeon</creatorcontrib><creatorcontrib>Xu, Haixia</creatorcontrib><creatorcontrib>Van Vleck, Aidan</creatorcontrib><creatorcontrib>Mawla, Alex M</creatorcontrib><creatorcontrib>Li, Albert Mao</creatorcontrib><creatorcontrib>Ye, Jiangbin</creatorcontrib><creatorcontrib>Huising, Mark O</creatorcontrib><creatorcontrib>Annes, Justin P</creatorcontrib><title>β-Cell Succinate Dehydrogenase Deficiency Triggers Metabolic Dysfunction and Insulinopenic Diabetes</title><title>Diabetes (New York, N.Y.)</title><addtitle>Diabetes</addtitle><description>Mitochondrial dysfunction plays a central role in type 2 diabetes (T2D); however, the pathogenic mechanisms in pancreatic β-cells are incompletely elucidated. Succinate dehydrogenase (SDH) is a key mitochondrial enzyme with dual functions in the tricarboxylic acid cycle and electron transport chain. Using samples from human with diabetes and a mouse model of β-cell-specific SDH ablation (SDHBβKO), we define SDH deficiency as a driver of mitochondrial dysfunction in β-cell failure and insulinopenic diabetes. β-Cell SDH deficiency impairs glucose-induced respiratory oxidative phosphorylation and mitochondrial membrane potential collapse, thereby compromising glucose-stimulated ATP production, insulin secretion, and β-cell growth. Mechanistically, metabolomic and transcriptomic studies reveal that the loss of SDH causes excess succinate accumulation, which inappropriately activates mammalian target of rapamycin (mTOR) complex 1-regulated metabolic anabolism, including increased SREBP-regulated lipid synthesis. These alterations, which mirror diabetes-associated human β-cell dysfunction, are partially reversed by acute mTOR inhibition with rapamycin. We propose SDH deficiency as a contributing mechanism to the progressive β-cell failure of diabetes and identify mTOR complex 1 inhibition as a potential mitigation strategy.</description><subject>Animals</subject><subject>Beta cells</subject><subject>Dehydrogenases</subject><subject>Diabetes</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Electron transport chain</subject><subject>Electron Transport Complex II - deficiency</subject><subject>Glucose - metabolism</subject><subject>Insulin</subject><subject>Insulin secretion</subject><subject>Insulin-Secreting Cells</subject><subject>Islet Studies</subject><subject>Membrane potential</subject><subject>Metabolism</subject><subject>Metabolism, Inborn Errors</subject><subject>Metabolomics</subject><subject>Mice</subject><subject>Mitochondria</subject><subject>Mitochondrial Diseases</subject><subject>Oxidative phosphorylation</subject><subject>Phosphorylation</subject><subject>Rapamycin</subject><subject>Sterol regulatory element-binding protein</subject><subject>Succinate dehydrogenase</subject><subject>Succinate Dehydrogenase - deficiency</subject><subject>Succinate Dehydrogenase - genetics</subject><subject>TOR protein</subject><subject>TOR Serine-Threonine Kinases - metabolism</subject><subject>Transcriptomics</subject><subject>Tricarboxylic acid cycle</subject><issn>0012-1797</issn><issn>1939-327X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkclqHDEQhoVJsCdODn6B0JBLcuhEUvWmiyGMsxgcfLADuQmpunos0yNNpO7AvFYeJM8UNV6IQx2Koj7-Wn7GTgR_LwHaD72VouQdVAdsJRSoEmT74xlbcS5kKVrVHrEXKd1yzpsch-wI6qqVrYQV6__8Ltc0jsXVjOi8mag4o5t9H8OGvElLNTh05HFfXEe32VBMxTeajA2jw-Jsn4bZ4-SCL4zvi3Of5tH5sCO_dJ2xNFF6yZ4PZkz06j4fs--fP12vv5YXl1_O1x8vSqw4TCWgagwiNBUIICWgt9ZS33BVCUIphO1QYVP3wLGyQ6uIA-YJADV1YrBwzE7vdHez3VKP5KdoRr2LbmviXgfj9NOOdzd6E35pld8olcoCb-8FYvg5U5r01iXM7zGewpy0bOpGct7WMqNv_kNvwxx9Pi9TnVCc13WXqXd3FMaQUqThcRnB9eKdXrzTi3eZff3v9o_kg1nwFw-Nlw4</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Lee, Sooyeon</creator><creator>Xu, Haixia</creator><creator>Van Vleck, Aidan</creator><creator>Mawla, Alex M</creator><creator>Li, Albert Mao</creator><creator>Ye, Jiangbin</creator><creator>Huising, Mark O</creator><creator>Annes, Justin P</creator><general>American Diabetes Association</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8431-3589</orcidid><orcidid>https://orcid.org/0000-0002-6594-2205</orcidid><orcidid>https://orcid.org/0000-0002-1076-3314</orcidid></search><sort><creationdate>20220701</creationdate><title>β-Cell Succinate Dehydrogenase Deficiency Triggers Metabolic Dysfunction and Insulinopenic Diabetes</title><author>Lee, Sooyeon ; Xu, Haixia ; Van Vleck, Aidan ; Mawla, Alex M ; Li, Albert Mao ; Ye, Jiangbin ; Huising, Mark O ; Annes, Justin P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c403t-3c96acc364313e913dbbbed60941ec211b8c9c65d30c4bf79e03cabe335e81fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Animals</topic><topic>Beta cells</topic><topic>Dehydrogenases</topic><topic>Diabetes</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Electron transport chain</topic><topic>Electron Transport Complex II - deficiency</topic><topic>Glucose - metabolism</topic><topic>Insulin</topic><topic>Insulin secretion</topic><topic>Insulin-Secreting Cells</topic><topic>Islet Studies</topic><topic>Membrane potential</topic><topic>Metabolism</topic><topic>Metabolism, Inborn Errors</topic><topic>Metabolomics</topic><topic>Mice</topic><topic>Mitochondria</topic><topic>Mitochondrial Diseases</topic><topic>Oxidative phosphorylation</topic><topic>Phosphorylation</topic><topic>Rapamycin</topic><topic>Sterol regulatory element-binding protein</topic><topic>Succinate dehydrogenase</topic><topic>Succinate Dehydrogenase - deficiency</topic><topic>Succinate Dehydrogenase - genetics</topic><topic>TOR protein</topic><topic>TOR Serine-Threonine Kinases - metabolism</topic><topic>Transcriptomics</topic><topic>Tricarboxylic acid cycle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Sooyeon</creatorcontrib><creatorcontrib>Xu, Haixia</creatorcontrib><creatorcontrib>Van Vleck, Aidan</creatorcontrib><creatorcontrib>Mawla, Alex M</creatorcontrib><creatorcontrib>Li, Albert Mao</creatorcontrib><creatorcontrib>Ye, Jiangbin</creatorcontrib><creatorcontrib>Huising, Mark O</creatorcontrib><creatorcontrib>Annes, Justin P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Diabetes (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Sooyeon</au><au>Xu, Haixia</au><au>Van Vleck, Aidan</au><au>Mawla, Alex M</au><au>Li, Albert Mao</au><au>Ye, Jiangbin</au><au>Huising, Mark O</au><au>Annes, Justin P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>β-Cell Succinate Dehydrogenase Deficiency Triggers Metabolic Dysfunction and Insulinopenic Diabetes</atitle><jtitle>Diabetes (New York, N.Y.)</jtitle><addtitle>Diabetes</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>71</volume><issue>7</issue><spage>1439</spage><epage>1453</epage><pages>1439-1453</pages><issn>0012-1797</issn><eissn>1939-327X</eissn><abstract>Mitochondrial dysfunction plays a central role in type 2 diabetes (T2D); however, the pathogenic mechanisms in pancreatic β-cells are incompletely elucidated. Succinate dehydrogenase (SDH) is a key mitochondrial enzyme with dual functions in the tricarboxylic acid cycle and electron transport chain. Using samples from human with diabetes and a mouse model of β-cell-specific SDH ablation (SDHBβKO), we define SDH deficiency as a driver of mitochondrial dysfunction in β-cell failure and insulinopenic diabetes. β-Cell SDH deficiency impairs glucose-induced respiratory oxidative phosphorylation and mitochondrial membrane potential collapse, thereby compromising glucose-stimulated ATP production, insulin secretion, and β-cell growth. Mechanistically, metabolomic and transcriptomic studies reveal that the loss of SDH causes excess succinate accumulation, which inappropriately activates mammalian target of rapamycin (mTOR) complex 1-regulated metabolic anabolism, including increased SREBP-regulated lipid synthesis. These alterations, which mirror diabetes-associated human β-cell dysfunction, are partially reversed by acute mTOR inhibition with rapamycin. We propose SDH deficiency as a contributing mechanism to the progressive β-cell failure of diabetes and identify mTOR complex 1 inhibition as a potential mitigation strategy.</abstract><cop>United States</cop><pub>American Diabetes Association</pub><pmid>35472723</pmid><doi>10.2337/db21-0834</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-8431-3589</orcidid><orcidid>https://orcid.org/0000-0002-6594-2205</orcidid><orcidid>https://orcid.org/0000-0002-1076-3314</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0012-1797
ispartof Diabetes (New York, N.Y.), 2022-07, Vol.71 (7), p.1439-1453
issn 0012-1797
1939-327X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9233299
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Animals
Beta cells
Dehydrogenases
Diabetes
Diabetes mellitus (non-insulin dependent)
Diabetes Mellitus, Type 2 - metabolism
Electron transport chain
Electron Transport Complex II - deficiency
Glucose - metabolism
Insulin
Insulin secretion
Insulin-Secreting Cells
Islet Studies
Membrane potential
Metabolism
Metabolism, Inborn Errors
Metabolomics
Mice
Mitochondria
Mitochondrial Diseases
Oxidative phosphorylation
Phosphorylation
Rapamycin
Sterol regulatory element-binding protein
Succinate dehydrogenase
Succinate Dehydrogenase - deficiency
Succinate Dehydrogenase - genetics
TOR protein
TOR Serine-Threonine Kinases - metabolism
Transcriptomics
Tricarboxylic acid cycle
title β-Cell Succinate Dehydrogenase Deficiency Triggers Metabolic Dysfunction and Insulinopenic Diabetes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A49%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=%CE%B2-Cell%20Succinate%20Dehydrogenase%20Deficiency%20Triggers%20Metabolic%20Dysfunction%20and%20Insulinopenic%20Diabetes&rft.jtitle=Diabetes%20(New%20York,%20N.Y.)&rft.au=Lee,%20Sooyeon&rft.date=2022-07-01&rft.volume=71&rft.issue=7&rft.spage=1439&rft.epage=1453&rft.pages=1439-1453&rft.issn=0012-1797&rft.eissn=1939-327X&rft_id=info:doi/10.2337/db21-0834&rft_dat=%3Cproquest_pubme%3E2681900558%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2681900558&rft_id=info:pmid/35472723&rfr_iscdi=true