Preparation of Fly Ash-Ladle Furnace Slag Blended Geopolymer Foam via Pre-Foaming Method with Polyoxyethylene Alkyether Sulphate Incorporation

This paper uses polyoxyethylene alkyether sulphate (PAS) to form foam via pre-foaming method, which is then incorporated into geopolymer based on fly ash and ladle furnace slag. In the literature, only PAS-geopolymer foams made with single precursor were studied. Therefore, the performance of fly as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materials 2022-06, Vol.15 (12), p.4085
Hauptverfasser: Hui-Teng, Ng, Cheng-Yong, Heah, Yun-Ming, Liew, Abdullah, Mohd Mustafa Al Bakri, Rojviriya, Catleya, Razi, Hasniyati Md, Garus, Sebastian, Nabiałek, Marcin, Sochacki, Wojciech, Abidin, Ilham Mukriz Zainal, Yong-Sing, Ng, Śliwa, Agata, Sandu, Andrei Victor
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 4085
container_title Materials
container_volume 15
creator Hui-Teng, Ng
Cheng-Yong, Heah
Yun-Ming, Liew
Abdullah, Mohd Mustafa Al Bakri
Rojviriya, Catleya
Razi, Hasniyati Md
Garus, Sebastian
Nabiałek, Marcin
Sochacki, Wojciech
Abidin, Ilham Mukriz Zainal
Yong-Sing, Ng
Śliwa, Agata
Sandu, Andrei Victor
description This paper uses polyoxyethylene alkyether sulphate (PAS) to form foam via pre-foaming method, which is then incorporated into geopolymer based on fly ash and ladle furnace slag. In the literature, only PAS-geopolymer foams made with single precursor were studied. Therefore, the performance of fly ash-slag blended geopolymer with and without PAS foam was investigated at 29–1000 °C. Unfoamed geopolymer (G-0) was prepared by a combination of sodium alkali, fly ash and slag. The PAS foam-to-paste ratio was set at 1.0 and 2.0 to prepare geopolymer foam (G-1 and G-2). Foamed geopolymer showed decreased compressive strength (25.1–32.0 MPa for G-1 and 21.5–36.2 MPa for G-2) compared to G-0 (36.9–43.1 MPa) at 29–1000 °C. Nevertheless, when compared to unheated samples, heated G-0 lost compressive strength by 8.7% up to 1000 °C, while the foamed geopolymer gained compressive strength by 68.5% up to 1000 °C. The thermal stability of foamed geopolymer was greatly improved due to the increased porosity, lower thermal conductivity, and incompact microstructure, which helped to reduce pressure during moisture evaporation and resulted in lessened deterioration.
doi_str_mv 10.3390/ma15124085
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9228590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2681041242</sourcerecordid><originalsourceid>FETCH-LOGICAL-c383t-7343afbec22f47feec98417d5e7e5ce0f0d160706158c3a576d51e041425d98a3</originalsourceid><addsrcrecordid>eNpdkc1u1DAQxyMEolXphSewxAUhBfwZxxekpWJLpUWt1HK2XHuySXHiYCeleYk-M4624ssXe2Z-85_xTFG8Jvg9Ywp_6A0RhHJci2fFMVGqKoni_Plf76PiNKU7nA9jpKbqZXHEhOSccHpcPF5FGE00UxcGFBq09QvapLbcGecBbec4GAvo2ps9-uRhcODQOYQx-KWHiLbB9Oi-MyirlKvRDXv0FaY2OPSzm1p0lcHwsGTPkrMBbfz31cip17MfWzMBuhhsiGM4tPCqeNEYn-D06T4pvm0_35x9KXeX5xdnm11pWc2mUjLOTHMLltKGywbAqpoT6QRIEBZwgx2psMQVEbVlRsjKCQJ4_bJwqjbspPh40B3n2x6chWGKxusxdr2Jiw6m0_9Ghq7V-3CvFaW1UDgLvH0SiOHHDGnSfZcseG8GCHPStKpJrkc5zeib_9C7sM7Vr5RUUlWqqjL17kDZGFKK0PxuhmC9blr_2TT7BTemm70</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679796966</pqid></control><display><type>article</type><title>Preparation of Fly Ash-Ladle Furnace Slag Blended Geopolymer Foam via Pre-Foaming Method with Polyoxyethylene Alkyether Sulphate Incorporation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hui-Teng, Ng ; Cheng-Yong, Heah ; Yun-Ming, Liew ; Abdullah, Mohd Mustafa Al Bakri ; Rojviriya, Catleya ; Razi, Hasniyati Md ; Garus, Sebastian ; Nabiałek, Marcin ; Sochacki, Wojciech ; Abidin, Ilham Mukriz Zainal ; Yong-Sing, Ng ; Śliwa, Agata ; Sandu, Andrei Victor</creator><creatorcontrib>Hui-Teng, Ng ; Cheng-Yong, Heah ; Yun-Ming, Liew ; Abdullah, Mohd Mustafa Al Bakri ; Rojviriya, Catleya ; Razi, Hasniyati Md ; Garus, Sebastian ; Nabiałek, Marcin ; Sochacki, Wojciech ; Abidin, Ilham Mukriz Zainal ; Yong-Sing, Ng ; Śliwa, Agata ; Sandu, Andrei Victor</creatorcontrib><description>This paper uses polyoxyethylene alkyether sulphate (PAS) to form foam via pre-foaming method, which is then incorporated into geopolymer based on fly ash and ladle furnace slag. In the literature, only PAS-geopolymer foams made with single precursor were studied. Therefore, the performance of fly ash-slag blended geopolymer with and without PAS foam was investigated at 29–1000 °C. Unfoamed geopolymer (G-0) was prepared by a combination of sodium alkali, fly ash and slag. The PAS foam-to-paste ratio was set at 1.0 and 2.0 to prepare geopolymer foam (G-1 and G-2). Foamed geopolymer showed decreased compressive strength (25.1–32.0 MPa for G-1 and 21.5–36.2 MPa for G-2) compared to G-0 (36.9–43.1 MPa) at 29–1000 °C. Nevertheless, when compared to unheated samples, heated G-0 lost compressive strength by 8.7% up to 1000 °C, while the foamed geopolymer gained compressive strength by 68.5% up to 1000 °C. The thermal stability of foamed geopolymer was greatly improved due to the increased porosity, lower thermal conductivity, and incompact microstructure, which helped to reduce pressure during moisture evaporation and resulted in lessened deterioration.</description><identifier>ISSN: 1996-1944</identifier><identifier>EISSN: 1996-1944</identifier><identifier>DOI: 10.3390/ma15124085</identifier><identifier>PMID: 35744142</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Caustic soda ; Compressive strength ; Curing ; Fly ash ; Foaming ; Foams ; Fourier transforms ; Geopolymers ; High temperature ; Ladles ; Mechanical properties ; Moisture effects ; Polyoxyethylene ; Slag ; Sodium ; Thermal conductivity ; Thermal stability</subject><ispartof>Materials, 2022-06, Vol.15 (12), p.4085</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c383t-7343afbec22f47feec98417d5e7e5ce0f0d160706158c3a576d51e041425d98a3</citedby><cites>FETCH-LOGICAL-c383t-7343afbec22f47feec98417d5e7e5ce0f0d160706158c3a576d51e041425d98a3</cites><orcidid>0000-0003-0185-5046 ; 0000-0002-6649-5435 ; 0000-0002-9302-3978 ; 0000-0001-6600-4969 ; 0000-0001-6585-3918 ; 0000-0002-2764-6480 ; 0000-0002-9292-749X ; 0000-0001-7093-7833</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228590/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9228590/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids></links><search><creatorcontrib>Hui-Teng, Ng</creatorcontrib><creatorcontrib>Cheng-Yong, Heah</creatorcontrib><creatorcontrib>Yun-Ming, Liew</creatorcontrib><creatorcontrib>Abdullah, Mohd Mustafa Al Bakri</creatorcontrib><creatorcontrib>Rojviriya, Catleya</creatorcontrib><creatorcontrib>Razi, Hasniyati Md</creatorcontrib><creatorcontrib>Garus, Sebastian</creatorcontrib><creatorcontrib>Nabiałek, Marcin</creatorcontrib><creatorcontrib>Sochacki, Wojciech</creatorcontrib><creatorcontrib>Abidin, Ilham Mukriz Zainal</creatorcontrib><creatorcontrib>Yong-Sing, Ng</creatorcontrib><creatorcontrib>Śliwa, Agata</creatorcontrib><creatorcontrib>Sandu, Andrei Victor</creatorcontrib><title>Preparation of Fly Ash-Ladle Furnace Slag Blended Geopolymer Foam via Pre-Foaming Method with Polyoxyethylene Alkyether Sulphate Incorporation</title><title>Materials</title><description>This paper uses polyoxyethylene alkyether sulphate (PAS) to form foam via pre-foaming method, which is then incorporated into geopolymer based on fly ash and ladle furnace slag. In the literature, only PAS-geopolymer foams made with single precursor were studied. Therefore, the performance of fly ash-slag blended geopolymer with and without PAS foam was investigated at 29–1000 °C. Unfoamed geopolymer (G-0) was prepared by a combination of sodium alkali, fly ash and slag. The PAS foam-to-paste ratio was set at 1.0 and 2.0 to prepare geopolymer foam (G-1 and G-2). Foamed geopolymer showed decreased compressive strength (25.1–32.0 MPa for G-1 and 21.5–36.2 MPa for G-2) compared to G-0 (36.9–43.1 MPa) at 29–1000 °C. Nevertheless, when compared to unheated samples, heated G-0 lost compressive strength by 8.7% up to 1000 °C, while the foamed geopolymer gained compressive strength by 68.5% up to 1000 °C. The thermal stability of foamed geopolymer was greatly improved due to the increased porosity, lower thermal conductivity, and incompact microstructure, which helped to reduce pressure during moisture evaporation and resulted in lessened deterioration.</description><subject>Caustic soda</subject><subject>Compressive strength</subject><subject>Curing</subject><subject>Fly ash</subject><subject>Foaming</subject><subject>Foams</subject><subject>Fourier transforms</subject><subject>Geopolymers</subject><subject>High temperature</subject><subject>Ladles</subject><subject>Mechanical properties</subject><subject>Moisture effects</subject><subject>Polyoxyethylene</subject><subject>Slag</subject><subject>Sodium</subject><subject>Thermal conductivity</subject><subject>Thermal stability</subject><issn>1996-1944</issn><issn>1996-1944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpdkc1u1DAQxyMEolXphSewxAUhBfwZxxekpWJLpUWt1HK2XHuySXHiYCeleYk-M4624ssXe2Z-85_xTFG8Jvg9Ywp_6A0RhHJci2fFMVGqKoni_Plf76PiNKU7nA9jpKbqZXHEhOSccHpcPF5FGE00UxcGFBq09QvapLbcGecBbec4GAvo2ps9-uRhcODQOYQx-KWHiLbB9Oi-MyirlKvRDXv0FaY2OPSzm1p0lcHwsGTPkrMBbfz31cip17MfWzMBuhhsiGM4tPCqeNEYn-D06T4pvm0_35x9KXeX5xdnm11pWc2mUjLOTHMLltKGywbAqpoT6QRIEBZwgx2psMQVEbVlRsjKCQJ4_bJwqjbspPh40B3n2x6chWGKxusxdr2Jiw6m0_9Ghq7V-3CvFaW1UDgLvH0SiOHHDGnSfZcseG8GCHPStKpJrkc5zeib_9C7sM7Vr5RUUlWqqjL17kDZGFKK0PxuhmC9blr_2TT7BTemm70</recordid><startdate>20220608</startdate><enddate>20220608</enddate><creator>Hui-Teng, Ng</creator><creator>Cheng-Yong, Heah</creator><creator>Yun-Ming, Liew</creator><creator>Abdullah, Mohd Mustafa Al Bakri</creator><creator>Rojviriya, Catleya</creator><creator>Razi, Hasniyati Md</creator><creator>Garus, Sebastian</creator><creator>Nabiałek, Marcin</creator><creator>Sochacki, Wojciech</creator><creator>Abidin, Ilham Mukriz Zainal</creator><creator>Yong-Sing, Ng</creator><creator>Śliwa, Agata</creator><creator>Sandu, Andrei Victor</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-0185-5046</orcidid><orcidid>https://orcid.org/0000-0002-6649-5435</orcidid><orcidid>https://orcid.org/0000-0002-9302-3978</orcidid><orcidid>https://orcid.org/0000-0001-6600-4969</orcidid><orcidid>https://orcid.org/0000-0001-6585-3918</orcidid><orcidid>https://orcid.org/0000-0002-2764-6480</orcidid><orcidid>https://orcid.org/0000-0002-9292-749X</orcidid><orcidid>https://orcid.org/0000-0001-7093-7833</orcidid></search><sort><creationdate>20220608</creationdate><title>Preparation of Fly Ash-Ladle Furnace Slag Blended Geopolymer Foam via Pre-Foaming Method with Polyoxyethylene Alkyether Sulphate Incorporation</title><author>Hui-Teng, Ng ; Cheng-Yong, Heah ; Yun-Ming, Liew ; Abdullah, Mohd Mustafa Al Bakri ; Rojviriya, Catleya ; Razi, Hasniyati Md ; Garus, Sebastian ; Nabiałek, Marcin ; Sochacki, Wojciech ; Abidin, Ilham Mukriz Zainal ; Yong-Sing, Ng ; Śliwa, Agata ; Sandu, Andrei Victor</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c383t-7343afbec22f47feec98417d5e7e5ce0f0d160706158c3a576d51e041425d98a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Caustic soda</topic><topic>Compressive strength</topic><topic>Curing</topic><topic>Fly ash</topic><topic>Foaming</topic><topic>Foams</topic><topic>Fourier transforms</topic><topic>Geopolymers</topic><topic>High temperature</topic><topic>Ladles</topic><topic>Mechanical properties</topic><topic>Moisture effects</topic><topic>Polyoxyethylene</topic><topic>Slag</topic><topic>Sodium</topic><topic>Thermal conductivity</topic><topic>Thermal stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hui-Teng, Ng</creatorcontrib><creatorcontrib>Cheng-Yong, Heah</creatorcontrib><creatorcontrib>Yun-Ming, Liew</creatorcontrib><creatorcontrib>Abdullah, Mohd Mustafa Al Bakri</creatorcontrib><creatorcontrib>Rojviriya, Catleya</creatorcontrib><creatorcontrib>Razi, Hasniyati Md</creatorcontrib><creatorcontrib>Garus, Sebastian</creatorcontrib><creatorcontrib>Nabiałek, Marcin</creatorcontrib><creatorcontrib>Sochacki, Wojciech</creatorcontrib><creatorcontrib>Abidin, Ilham Mukriz Zainal</creatorcontrib><creatorcontrib>Yong-Sing, Ng</creatorcontrib><creatorcontrib>Śliwa, Agata</creatorcontrib><creatorcontrib>Sandu, Andrei Victor</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hui-Teng, Ng</au><au>Cheng-Yong, Heah</au><au>Yun-Ming, Liew</au><au>Abdullah, Mohd Mustafa Al Bakri</au><au>Rojviriya, Catleya</au><au>Razi, Hasniyati Md</au><au>Garus, Sebastian</au><au>Nabiałek, Marcin</au><au>Sochacki, Wojciech</au><au>Abidin, Ilham Mukriz Zainal</au><au>Yong-Sing, Ng</au><au>Śliwa, Agata</au><au>Sandu, Andrei Victor</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preparation of Fly Ash-Ladle Furnace Slag Blended Geopolymer Foam via Pre-Foaming Method with Polyoxyethylene Alkyether Sulphate Incorporation</atitle><jtitle>Materials</jtitle><date>2022-06-08</date><risdate>2022</risdate><volume>15</volume><issue>12</issue><spage>4085</spage><pages>4085-</pages><issn>1996-1944</issn><eissn>1996-1944</eissn><abstract>This paper uses polyoxyethylene alkyether sulphate (PAS) to form foam via pre-foaming method, which is then incorporated into geopolymer based on fly ash and ladle furnace slag. In the literature, only PAS-geopolymer foams made with single precursor were studied. Therefore, the performance of fly ash-slag blended geopolymer with and without PAS foam was investigated at 29–1000 °C. Unfoamed geopolymer (G-0) was prepared by a combination of sodium alkali, fly ash and slag. The PAS foam-to-paste ratio was set at 1.0 and 2.0 to prepare geopolymer foam (G-1 and G-2). Foamed geopolymer showed decreased compressive strength (25.1–32.0 MPa for G-1 and 21.5–36.2 MPa for G-2) compared to G-0 (36.9–43.1 MPa) at 29–1000 °C. Nevertheless, when compared to unheated samples, heated G-0 lost compressive strength by 8.7% up to 1000 °C, while the foamed geopolymer gained compressive strength by 68.5% up to 1000 °C. The thermal stability of foamed geopolymer was greatly improved due to the increased porosity, lower thermal conductivity, and incompact microstructure, which helped to reduce pressure during moisture evaporation and resulted in lessened deterioration.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35744142</pmid><doi>10.3390/ma15124085</doi><orcidid>https://orcid.org/0000-0003-0185-5046</orcidid><orcidid>https://orcid.org/0000-0002-6649-5435</orcidid><orcidid>https://orcid.org/0000-0002-9302-3978</orcidid><orcidid>https://orcid.org/0000-0001-6600-4969</orcidid><orcidid>https://orcid.org/0000-0001-6585-3918</orcidid><orcidid>https://orcid.org/0000-0002-2764-6480</orcidid><orcidid>https://orcid.org/0000-0002-9292-749X</orcidid><orcidid>https://orcid.org/0000-0001-7093-7833</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1996-1944
ispartof Materials, 2022-06, Vol.15 (12), p.4085
issn 1996-1944
1996-1944
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9228590
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central; Free Full-Text Journals in Chemistry
subjects Caustic soda
Compressive strength
Curing
Fly ash
Foaming
Foams
Fourier transforms
Geopolymers
High temperature
Ladles
Mechanical properties
Moisture effects
Polyoxyethylene
Slag
Sodium
Thermal conductivity
Thermal stability
title Preparation of Fly Ash-Ladle Furnace Slag Blended Geopolymer Foam via Pre-Foaming Method with Polyoxyethylene Alkyether Sulphate Incorporation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T04%3A52%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preparation%20of%20Fly%20Ash-Ladle%20Furnace%20Slag%20Blended%20Geopolymer%20Foam%20via%20Pre-Foaming%20Method%20with%20Polyoxyethylene%20Alkyether%20Sulphate%20Incorporation&rft.jtitle=Materials&rft.au=Hui-Teng,%20Ng&rft.date=2022-06-08&rft.volume=15&rft.issue=12&rft.spage=4085&rft.pages=4085-&rft.issn=1996-1944&rft.eissn=1996-1944&rft_id=info:doi/10.3390/ma15124085&rft_dat=%3Cproquest_pubme%3E2681041242%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679796966&rft_id=info:pmid/35744142&rfr_iscdi=true