Development of a Machine Learning Model to Predict Non-Durable Response to Anti-TNF Therapy in Crohn’s Disease Using Transcriptome Imputed from Genotypes

Almost half of patients show no primary or secondary response to monoclonal anti-tumor necrosis factor α (anti-TNF) antibody treatment for inflammatory bowel disease (IBD). Thus, the exact mechanisms of a non-durable response (NDR) remain inadequately defined. We used our genome-wide genotype data t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of personalized medicine 2022-06, Vol.12 (6), p.947
Hauptverfasser: Park, Soo Kyung, Kim, Yea Bean, Kim, Sangsoo, Lee, Chil Woo, Choi, Chang Hwan, Kang, Sang-Bum, Kim, Tae Oh, Bang, Ki Bae, Chun, Jaeyoung, Cha, Jae Myung, Im, Jong Pil, Kim, Min Suk, Ahn, Kwang Sung, Kim, Seon-Young, Park, Dong Il
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page 947
container_title Journal of personalized medicine
container_volume 12
creator Park, Soo Kyung
Kim, Yea Bean
Kim, Sangsoo
Lee, Chil Woo
Choi, Chang Hwan
Kang, Sang-Bum
Kim, Tae Oh
Bang, Ki Bae
Chun, Jaeyoung
Cha, Jae Myung
Im, Jong Pil
Kim, Min Suk
Ahn, Kwang Sung
Kim, Seon-Young
Park, Dong Il
description Almost half of patients show no primary or secondary response to monoclonal anti-tumor necrosis factor α (anti-TNF) antibody treatment for inflammatory bowel disease (IBD). Thus, the exact mechanisms of a non-durable response (NDR) remain inadequately defined. We used our genome-wide genotype data to impute expression values as features in training machine learning models to predict a NDR. Blood samples from various IBD cohorts were used for genotyping with the Korea Biobank Array. A total of 234 patients with Crohn’s disease (CD) who received their first anti-TNF therapy were enrolled. The expression profiles of 6294 genes in whole-blood tissue imputed from the genotype data were combined with clinical parameters to train a logistic model to predict the NDR. The top two and three most significant features were genetic features (DPY19L3, GSTT1, and NUCB1), not clinical features. The logistic regression of the NDR vs. DR status in our cohort by the imputed expression levels showed that the β coefficients were positive for DPY19L3 and GSTT1, and negative for NUCB1, concordant with the known eQTL information. Machine learning models using imputed gene expression features effectively predicted NDR to anti-TNF agents in patients with CD.
doi_str_mv 10.3390/jpm12060947
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9224874</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2679731883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-e9424cb123dd8b8b4681e069af28de6e821486e17dc5510fcd648f66c02fd6973</originalsourceid><addsrcrecordid>eNpdkc9q3DAQxkVpacI2p76AoJdCcaN_luVLIew2aWCTlrI5G1kaZ7XYkivZgb31NULerk9SLQkh7Vxm4Pvx8c0MQu8p-cx5TU5340AZkaQW1St0zEhVFkIw-frFfIROUtqRXKpkTJK36IiXleAVZ8foYQV30IdxAD_h0GGNr7TZOg94DTp652_xVbDQ4yngHxGsMxO-Dr5YzVG3PeCfkMbgExz0Mz-5YnN9jjdbiHrcY-fxMoat__P7PuGVS6AzeJMOppuofTLRjVMYAF8O4zyBxV0MA74AH6b9COkdetPpPsHJU1-gm_Ovm-W3Yv394nJ5ti4MV3IqoBZMmJYybq1qVSukokBkrTumLEhQjAolgVbWlCUlnbFSqE5KQ1hnZV3xBfry6DvO7QDW5FNE3TdjdIOO-yZo1_yreLdtbsNdUzMmVL7kAn18Mojh1wxpagaXDPS99hDm1LCciAhWUZXRD_-huzBHn9fLVJXDUKV4pj49UiaGlCJ0z2EoaQ5_b178nf8FwDShgw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679731883</pqid></control><display><type>article</type><title>Development of a Machine Learning Model to Predict Non-Durable Response to Anti-TNF Therapy in Crohn’s Disease Using Transcriptome Imputed from Genotypes</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>PubMed Central</source><creator>Park, Soo Kyung ; Kim, Yea Bean ; Kim, Sangsoo ; Lee, Chil Woo ; Choi, Chang Hwan ; Kang, Sang-Bum ; Kim, Tae Oh ; Bang, Ki Bae ; Chun, Jaeyoung ; Cha, Jae Myung ; Im, Jong Pil ; Kim, Min Suk ; Ahn, Kwang Sung ; Kim, Seon-Young ; Park, Dong Il</creator><creatorcontrib>Park, Soo Kyung ; Kim, Yea Bean ; Kim, Sangsoo ; Lee, Chil Woo ; Choi, Chang Hwan ; Kang, Sang-Bum ; Kim, Tae Oh ; Bang, Ki Bae ; Chun, Jaeyoung ; Cha, Jae Myung ; Im, Jong Pil ; Kim, Min Suk ; Ahn, Kwang Sung ; Kim, Seon-Young ; Park, Dong Il</creatorcontrib><description>Almost half of patients show no primary or secondary response to monoclonal anti-tumor necrosis factor α (anti-TNF) antibody treatment for inflammatory bowel disease (IBD). Thus, the exact mechanisms of a non-durable response (NDR) remain inadequately defined. We used our genome-wide genotype data to impute expression values as features in training machine learning models to predict a NDR. Blood samples from various IBD cohorts were used for genotyping with the Korea Biobank Array. A total of 234 patients with Crohn’s disease (CD) who received their first anti-TNF therapy were enrolled. The expression profiles of 6294 genes in whole-blood tissue imputed from the genotype data were combined with clinical parameters to train a logistic model to predict the NDR. The top two and three most significant features were genetic features (DPY19L3, GSTT1, and NUCB1), not clinical features. The logistic regression of the NDR vs. DR status in our cohort by the imputed expression levels showed that the β coefficients were positive for DPY19L3 and GSTT1, and negative for NUCB1, concordant with the known eQTL information. Machine learning models using imputed gene expression features effectively predicted NDR to anti-TNF agents in patients with CD.</description><identifier>ISSN: 2075-4426</identifier><identifier>EISSN: 2075-4426</identifier><identifier>DOI: 10.3390/jpm12060947</identifier><identifier>PMID: 35743732</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Biobanks ; Crohn's disease ; Datasets ; Feature selection ; Gene expression ; Genomes ; Genotype &amp; phenotype ; Genotypes ; Genotyping ; GSTT1 protein ; Inflammatory bowel disease ; Inflammatory bowel diseases ; Learning algorithms ; Machine learning ; Patients ; Precision medicine ; Quality control ; Transcriptomes ; Tumor necrosis factor-TNF ; Tumor necrosis factor-α</subject><ispartof>Journal of personalized medicine, 2022-06, Vol.12 (6), p.947</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-e9424cb123dd8b8b4681e069af28de6e821486e17dc5510fcd648f66c02fd6973</citedby><cites>FETCH-LOGICAL-c386t-e9424cb123dd8b8b4681e069af28de6e821486e17dc5510fcd648f66c02fd6973</cites><orcidid>0000-0002-2676-7002 ; 0000-0002-4212-0380 ; 0000-0003-4519-1683 ; 0000-0002-1946-7896 ; 0000-0002-9961-9318 ; 0000-0002-1030-7730 ; 0000-0003-1584-0160 ; 0000-0001-9836-9823</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224874/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9224874/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids></links><search><creatorcontrib>Park, Soo Kyung</creatorcontrib><creatorcontrib>Kim, Yea Bean</creatorcontrib><creatorcontrib>Kim, Sangsoo</creatorcontrib><creatorcontrib>Lee, Chil Woo</creatorcontrib><creatorcontrib>Choi, Chang Hwan</creatorcontrib><creatorcontrib>Kang, Sang-Bum</creatorcontrib><creatorcontrib>Kim, Tae Oh</creatorcontrib><creatorcontrib>Bang, Ki Bae</creatorcontrib><creatorcontrib>Chun, Jaeyoung</creatorcontrib><creatorcontrib>Cha, Jae Myung</creatorcontrib><creatorcontrib>Im, Jong Pil</creatorcontrib><creatorcontrib>Kim, Min Suk</creatorcontrib><creatorcontrib>Ahn, Kwang Sung</creatorcontrib><creatorcontrib>Kim, Seon-Young</creatorcontrib><creatorcontrib>Park, Dong Il</creatorcontrib><title>Development of a Machine Learning Model to Predict Non-Durable Response to Anti-TNF Therapy in Crohn’s Disease Using Transcriptome Imputed from Genotypes</title><title>Journal of personalized medicine</title><description>Almost half of patients show no primary or secondary response to monoclonal anti-tumor necrosis factor α (anti-TNF) antibody treatment for inflammatory bowel disease (IBD). Thus, the exact mechanisms of a non-durable response (NDR) remain inadequately defined. We used our genome-wide genotype data to impute expression values as features in training machine learning models to predict a NDR. Blood samples from various IBD cohorts were used for genotyping with the Korea Biobank Array. A total of 234 patients with Crohn’s disease (CD) who received their first anti-TNF therapy were enrolled. The expression profiles of 6294 genes in whole-blood tissue imputed from the genotype data were combined with clinical parameters to train a logistic model to predict the NDR. The top two and three most significant features were genetic features (DPY19L3, GSTT1, and NUCB1), not clinical features. The logistic regression of the NDR vs. DR status in our cohort by the imputed expression levels showed that the β coefficients were positive for DPY19L3 and GSTT1, and negative for NUCB1, concordant with the known eQTL information. Machine learning models using imputed gene expression features effectively predicted NDR to anti-TNF agents in patients with CD.</description><subject>Biobanks</subject><subject>Crohn's disease</subject><subject>Datasets</subject><subject>Feature selection</subject><subject>Gene expression</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Genotypes</subject><subject>Genotyping</subject><subject>GSTT1 protein</subject><subject>Inflammatory bowel disease</subject><subject>Inflammatory bowel diseases</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Patients</subject><subject>Precision medicine</subject><subject>Quality control</subject><subject>Transcriptomes</subject><subject>Tumor necrosis factor-TNF</subject><subject>Tumor necrosis factor-α</subject><issn>2075-4426</issn><issn>2075-4426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkc9q3DAQxkVpacI2p76AoJdCcaN_luVLIew2aWCTlrI5G1kaZ7XYkivZgb31NULerk9SLQkh7Vxm4Pvx8c0MQu8p-cx5TU5340AZkaQW1St0zEhVFkIw-frFfIROUtqRXKpkTJK36IiXleAVZ8foYQV30IdxAD_h0GGNr7TZOg94DTp652_xVbDQ4yngHxGsMxO-Dr5YzVG3PeCfkMbgExz0Mz-5YnN9jjdbiHrcY-fxMoat__P7PuGVS6AzeJMOppuofTLRjVMYAF8O4zyBxV0MA74AH6b9COkdetPpPsHJU1-gm_Ovm-W3Yv394nJ5ti4MV3IqoBZMmJYybq1qVSukokBkrTumLEhQjAolgVbWlCUlnbFSqE5KQ1hnZV3xBfry6DvO7QDW5FNE3TdjdIOO-yZo1_yreLdtbsNdUzMmVL7kAn18Mojh1wxpagaXDPS99hDm1LCciAhWUZXRD_-huzBHn9fLVJXDUKV4pj49UiaGlCJ0z2EoaQ5_b178nf8FwDShgw</recordid><startdate>20220609</startdate><enddate>20220609</enddate><creator>Park, Soo Kyung</creator><creator>Kim, Yea Bean</creator><creator>Kim, Sangsoo</creator><creator>Lee, Chil Woo</creator><creator>Choi, Chang Hwan</creator><creator>Kang, Sang-Bum</creator><creator>Kim, Tae Oh</creator><creator>Bang, Ki Bae</creator><creator>Chun, Jaeyoung</creator><creator>Cha, Jae Myung</creator><creator>Im, Jong Pil</creator><creator>Kim, Min Suk</creator><creator>Ahn, Kwang Sung</creator><creator>Kim, Seon-Young</creator><creator>Park, Dong Il</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FH</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-2676-7002</orcidid><orcidid>https://orcid.org/0000-0002-4212-0380</orcidid><orcidid>https://orcid.org/0000-0003-4519-1683</orcidid><orcidid>https://orcid.org/0000-0002-1946-7896</orcidid><orcidid>https://orcid.org/0000-0002-9961-9318</orcidid><orcidid>https://orcid.org/0000-0002-1030-7730</orcidid><orcidid>https://orcid.org/0000-0003-1584-0160</orcidid><orcidid>https://orcid.org/0000-0001-9836-9823</orcidid></search><sort><creationdate>20220609</creationdate><title>Development of a Machine Learning Model to Predict Non-Durable Response to Anti-TNF Therapy in Crohn’s Disease Using Transcriptome Imputed from Genotypes</title><author>Park, Soo Kyung ; Kim, Yea Bean ; Kim, Sangsoo ; Lee, Chil Woo ; Choi, Chang Hwan ; Kang, Sang-Bum ; Kim, Tae Oh ; Bang, Ki Bae ; Chun, Jaeyoung ; Cha, Jae Myung ; Im, Jong Pil ; Kim, Min Suk ; Ahn, Kwang Sung ; Kim, Seon-Young ; Park, Dong Il</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-e9424cb123dd8b8b4681e069af28de6e821486e17dc5510fcd648f66c02fd6973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biobanks</topic><topic>Crohn's disease</topic><topic>Datasets</topic><topic>Feature selection</topic><topic>Gene expression</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Genotypes</topic><topic>Genotyping</topic><topic>GSTT1 protein</topic><topic>Inflammatory bowel disease</topic><topic>Inflammatory bowel diseases</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Patients</topic><topic>Precision medicine</topic><topic>Quality control</topic><topic>Transcriptomes</topic><topic>Tumor necrosis factor-TNF</topic><topic>Tumor necrosis factor-α</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Soo Kyung</creatorcontrib><creatorcontrib>Kim, Yea Bean</creatorcontrib><creatorcontrib>Kim, Sangsoo</creatorcontrib><creatorcontrib>Lee, Chil Woo</creatorcontrib><creatorcontrib>Choi, Chang Hwan</creatorcontrib><creatorcontrib>Kang, Sang-Bum</creatorcontrib><creatorcontrib>Kim, Tae Oh</creatorcontrib><creatorcontrib>Bang, Ki Bae</creatorcontrib><creatorcontrib>Chun, Jaeyoung</creatorcontrib><creatorcontrib>Cha, Jae Myung</creatorcontrib><creatorcontrib>Im, Jong Pil</creatorcontrib><creatorcontrib>Kim, Min Suk</creatorcontrib><creatorcontrib>Ahn, Kwang Sung</creatorcontrib><creatorcontrib>Kim, Seon-Young</creatorcontrib><creatorcontrib>Park, Dong Il</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of personalized medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Soo Kyung</au><au>Kim, Yea Bean</au><au>Kim, Sangsoo</au><au>Lee, Chil Woo</au><au>Choi, Chang Hwan</au><au>Kang, Sang-Bum</au><au>Kim, Tae Oh</au><au>Bang, Ki Bae</au><au>Chun, Jaeyoung</au><au>Cha, Jae Myung</au><au>Im, Jong Pil</au><au>Kim, Min Suk</au><au>Ahn, Kwang Sung</au><au>Kim, Seon-Young</au><au>Park, Dong Il</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of a Machine Learning Model to Predict Non-Durable Response to Anti-TNF Therapy in Crohn’s Disease Using Transcriptome Imputed from Genotypes</atitle><jtitle>Journal of personalized medicine</jtitle><date>2022-06-09</date><risdate>2022</risdate><volume>12</volume><issue>6</issue><spage>947</spage><pages>947-</pages><issn>2075-4426</issn><eissn>2075-4426</eissn><abstract>Almost half of patients show no primary or secondary response to monoclonal anti-tumor necrosis factor α (anti-TNF) antibody treatment for inflammatory bowel disease (IBD). Thus, the exact mechanisms of a non-durable response (NDR) remain inadequately defined. We used our genome-wide genotype data to impute expression values as features in training machine learning models to predict a NDR. Blood samples from various IBD cohorts were used for genotyping with the Korea Biobank Array. A total of 234 patients with Crohn’s disease (CD) who received their first anti-TNF therapy were enrolled. The expression profiles of 6294 genes in whole-blood tissue imputed from the genotype data were combined with clinical parameters to train a logistic model to predict the NDR. The top two and three most significant features were genetic features (DPY19L3, GSTT1, and NUCB1), not clinical features. The logistic regression of the NDR vs. DR status in our cohort by the imputed expression levels showed that the β coefficients were positive for DPY19L3 and GSTT1, and negative for NUCB1, concordant with the known eQTL information. Machine learning models using imputed gene expression features effectively predicted NDR to anti-TNF agents in patients with CD.</abstract><cop>Basel</cop><pub>MDPI AG</pub><pmid>35743732</pmid><doi>10.3390/jpm12060947</doi><orcidid>https://orcid.org/0000-0002-2676-7002</orcidid><orcidid>https://orcid.org/0000-0002-4212-0380</orcidid><orcidid>https://orcid.org/0000-0003-4519-1683</orcidid><orcidid>https://orcid.org/0000-0002-1946-7896</orcidid><orcidid>https://orcid.org/0000-0002-9961-9318</orcidid><orcidid>https://orcid.org/0000-0002-1030-7730</orcidid><orcidid>https://orcid.org/0000-0003-1584-0160</orcidid><orcidid>https://orcid.org/0000-0001-9836-9823</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4426
ispartof Journal of personalized medicine, 2022-06, Vol.12 (6), p.947
issn 2075-4426
2075-4426
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9224874
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; PubMed Central
subjects Biobanks
Crohn's disease
Datasets
Feature selection
Gene expression
Genomes
Genotype & phenotype
Genotypes
Genotyping
GSTT1 protein
Inflammatory bowel disease
Inflammatory bowel diseases
Learning algorithms
Machine learning
Patients
Precision medicine
Quality control
Transcriptomes
Tumor necrosis factor-TNF
Tumor necrosis factor-α
title Development of a Machine Learning Model to Predict Non-Durable Response to Anti-TNF Therapy in Crohn’s Disease Using Transcriptome Imputed from Genotypes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A25%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20a%20Machine%20Learning%20Model%20to%20Predict%20Non-Durable%20Response%20to%20Anti-TNF%20Therapy%20in%20Crohn%E2%80%99s%20Disease%20Using%20Transcriptome%20Imputed%20from%20Genotypes&rft.jtitle=Journal%20of%20personalized%20medicine&rft.au=Park,%20Soo%20Kyung&rft.date=2022-06-09&rft.volume=12&rft.issue=6&rft.spage=947&rft.pages=947-&rft.issn=2075-4426&rft.eissn=2075-4426&rft_id=info:doi/10.3390/jpm12060947&rft_dat=%3Cproquest_pubme%3E2679731883%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679731883&rft_id=info:pmid/35743732&rfr_iscdi=true