Correlation between Population Density and COVID-19 Cases during the Third Wave in Malaysia: Effect of the Delta Variant

In this study, we describe the incidence and distribution of COVID-19 cases in Malaysia at district level and determine their correlation with absolute population and population density, before and during the period that the Delta variant was dominant in Malaysia. Methods: Data on the number of loca...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of environmental research and public health 2022-06, Vol.19 (12), p.7439
Hauptverfasser: Md Iderus, Nuur Hafizah, Lakha Singh, Sarbhan Singh, Mohd Ghazali, Sumarni, Yoon Ling, Cheong, Cia Vei, Tan, Md Zamri, Ahmed Syahmi Syafiq, Ahmad Jaafar, Nadhar, Ruslan, Qistina, Ahmad Jaghfar, Nur Huda, Gill, Balvinder Singh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this study, we describe the incidence and distribution of COVID-19 cases in Malaysia at district level and determine their correlation with absolute population and population density, before and during the period that the Delta variant was dominant in Malaysia. Methods: Data on the number of locally transmitted COVID-19 cases in each of the 145 districts in Malaysia, between 20 September 2020 and 19 September 2021, were manually extracted from official reports. The cumulative number of COVID-19 cases, population and population density of each district were described using choropleth maps. The correlation between population and population density with the cumulative number of COVID-19 cases in each district in the pre-Delta dominant period (20 September 2020–29 June 2021) and during the Delta dominant period (30 June 2021–19 September 2021) were determined using Pearson’s correlation. Results: COVID-19 cases were strongly correlated with both absolute population and population density (Pearson’s correlation coefficient (r) = 0.87 and r = 0.78, respectively). A majority of the districts had higher numbers of COVID-19 cases during the Delta dominant period compared to the pre-Delta period. The correlation coefficient in the pre-Delta dominant period was r = 0.79 vs. r = 0.86 during the Delta dominant period, whereas the pre-Delta dominant population density was r = 0.72, and in the Delta dominant period, r = 0.76. Conclusion: More populous and densely populated districts have a higher risk of transmission of COVID-19, especially with the Delta variant as the dominant circulating strain. Therefore, extra and more stringent control measures should be instituted in highly populated areas to control the spread of COVID-19.
ISSN:1660-4601
1661-7827
1660-4601
DOI:10.3390/ijerph19127439