The Breast Cancer Protein Co-Expression Landscape

Breast cancer is a complex phenotype (or better yet, several complex phenotypes) characterized by the interplay of a large number of cellular and biomolecular entities. Biological networks have been successfully used to capture some of the heterogeneity of intricate pathophenotypes, including cancer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cancers 2022-06, Vol.14 (12), p.2957
Hauptverfasser: Ruhle, Martín, Espinal-Enríquez, Jesús, Hernández-Lemus, Enrique
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 12
container_start_page 2957
container_title Cancers
container_volume 14
creator Ruhle, Martín
Espinal-Enríquez, Jesús
Hernández-Lemus, Enrique
description Breast cancer is a complex phenotype (or better yet, several complex phenotypes) characterized by the interplay of a large number of cellular and biomolecular entities. Biological networks have been successfully used to capture some of the heterogeneity of intricate pathophenotypes, including cancer. Gene coexpression networks, in particular, have been used to study large-scale regulatory patterns. Ultimately, biological processes are carried out by proteins and their complexes. However, to date, most of the tumor profiling research has focused on the genomic and transcriptomic information. Here, we tried to expand this profiling through the analysis of open proteomic data via mutual information co-expression networks' analysis. We could observe that there are distinctive biological processes associated with communities of these networks and how some transcriptional co-expression phenomena are lost at the protein level. These kinds of data and network analyses are a broad resource to explore cellular behavior and cancer research.
doi_str_mv 10.3390/cancers14122957
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9221059</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A722088338</galeid><sourcerecordid>A722088338</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-a58a958bdca8dad0a02034d0f20a28ed6fa688cb527e20a4544091d0bc5ace6f3</originalsourceid><addsrcrecordid>eNptkc1PHSEUxYlpU4113Z2ZpJtuRi8wfG2a2Bdrm7ykLnRNeHBHMfPgFeaZ9r8vftSqKSy4ufzOIZdDyAcKR5wbOPYueSyVDpQxI9QO2WOgWC-lGd48q3fJQa030BbnVEn1juxyoQaQjO4RenGN3ZeCrs7d4t6vOy95xpi6Re5Pf20K1hpz6pYuherdBt-Tt6ObKh48nvvk8uvpxeJbv_xx9n1xsuz9QPXcO6GdEXoVvNPBBXDAgA8BRgaOaQxydFJrvxJMYWsNYhjA0AArL5xHOfJ98vnBd7NdrTF4THNxk92UuHblt80u2pc3KV7bq3xrDWMUhGkGnx4NSv65xTrbdawep8klzNtqmdQUuBESGvrxFXqTtyW18RqljFRKgPxHXbkJbUxjbu_6O1N7ohgDrTnXjTr6D9V2wHX0OeEYW_-F4PhB4EuuteD4NCMFexe0fRV0Uxw-_5on_m-s_A-OpqLH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2679677506</pqid></control><display><type>article</type><title>The Breast Cancer Protein Co-Expression Landscape</title><source>PubMed Central Open Access</source><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Ruhle, Martín ; Espinal-Enríquez, Jesús ; Hernández-Lemus, Enrique</creator><creatorcontrib>Ruhle, Martín ; Espinal-Enríquez, Jesús ; Hernández-Lemus, Enrique</creatorcontrib><description>Breast cancer is a complex phenotype (or better yet, several complex phenotypes) characterized by the interplay of a large number of cellular and biomolecular entities. Biological networks have been successfully used to capture some of the heterogeneity of intricate pathophenotypes, including cancer. Gene coexpression networks, in particular, have been used to study large-scale regulatory patterns. Ultimately, biological processes are carried out by proteins and their complexes. However, to date, most of the tumor profiling research has focused on the genomic and transcriptomic information. Here, we tried to expand this profiling through the analysis of open proteomic data via mutual information co-expression networks' analysis. We could observe that there are distinctive biological processes associated with communities of these networks and how some transcriptional co-expression phenomena are lost at the protein level. These kinds of data and network analyses are a broad resource to explore cellular behavior and cancer research.</description><identifier>ISSN: 2072-6694</identifier><identifier>EISSN: 2072-6694</identifier><identifier>DOI: 10.3390/cancers14122957</identifier><identifier>PMID: 35740621</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Breast cancer ; Cancer ; Development and progression ; Gene expression ; Genetic aspects ; Genomes ; Mass spectrometry ; Oncology, Experimental ; Phenotypes ; Protein expression ; Protein-protein interactions ; Proteins ; Proteomics ; Quality control ; Random variables ; Scientific imaging ; Transcriptomics ; Tumors</subject><ispartof>Cancers, 2022-06, Vol.14 (12), p.2957</ispartof><rights>COPYRIGHT 2022 MDPI AG</rights><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-a58a958bdca8dad0a02034d0f20a28ed6fa688cb527e20a4544091d0bc5ace6f3</citedby><cites>FETCH-LOGICAL-c418t-a58a958bdca8dad0a02034d0f20a28ed6fa688cb527e20a4544091d0bc5ace6f3</cites><orcidid>0000-0002-1872-1397 ; 0000-0002-8707-2511 ; 0000-0001-6692-8803</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221059/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9221059/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35740621$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ruhle, Martín</creatorcontrib><creatorcontrib>Espinal-Enríquez, Jesús</creatorcontrib><creatorcontrib>Hernández-Lemus, Enrique</creatorcontrib><title>The Breast Cancer Protein Co-Expression Landscape</title><title>Cancers</title><addtitle>Cancers (Basel)</addtitle><description>Breast cancer is a complex phenotype (or better yet, several complex phenotypes) characterized by the interplay of a large number of cellular and biomolecular entities. Biological networks have been successfully used to capture some of the heterogeneity of intricate pathophenotypes, including cancer. Gene coexpression networks, in particular, have been used to study large-scale regulatory patterns. Ultimately, biological processes are carried out by proteins and their complexes. However, to date, most of the tumor profiling research has focused on the genomic and transcriptomic information. Here, we tried to expand this profiling through the analysis of open proteomic data via mutual information co-expression networks' analysis. We could observe that there are distinctive biological processes associated with communities of these networks and how some transcriptional co-expression phenomena are lost at the protein level. These kinds of data and network analyses are a broad resource to explore cellular behavior and cancer research.</description><subject>Breast cancer</subject><subject>Cancer</subject><subject>Development and progression</subject><subject>Gene expression</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Mass spectrometry</subject><subject>Oncology, Experimental</subject><subject>Phenotypes</subject><subject>Protein expression</subject><subject>Protein-protein interactions</subject><subject>Proteins</subject><subject>Proteomics</subject><subject>Quality control</subject><subject>Random variables</subject><subject>Scientific imaging</subject><subject>Transcriptomics</subject><subject>Tumors</subject><issn>2072-6694</issn><issn>2072-6694</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkc1PHSEUxYlpU4113Z2ZpJtuRi8wfG2a2Bdrm7ykLnRNeHBHMfPgFeaZ9r8vftSqKSy4ufzOIZdDyAcKR5wbOPYueSyVDpQxI9QO2WOgWC-lGd48q3fJQa030BbnVEn1juxyoQaQjO4RenGN3ZeCrs7d4t6vOy95xpi6Re5Pf20K1hpz6pYuherdBt-Tt6ObKh48nvvk8uvpxeJbv_xx9n1xsuz9QPXcO6GdEXoVvNPBBXDAgA8BRgaOaQxydFJrvxJMYWsNYhjA0AArL5xHOfJ98vnBd7NdrTF4THNxk92UuHblt80u2pc3KV7bq3xrDWMUhGkGnx4NSv65xTrbdawep8klzNtqmdQUuBESGvrxFXqTtyW18RqljFRKgPxHXbkJbUxjbu_6O1N7ohgDrTnXjTr6D9V2wHX0OeEYW_-F4PhB4EuuteD4NCMFexe0fRV0Uxw-_5on_m-s_A-OpqLH</recordid><startdate>20220615</startdate><enddate>20220615</enddate><creator>Ruhle, Martín</creator><creator>Espinal-Enríquez, Jesús</creator><creator>Hernández-Lemus, Enrique</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7T5</scope><scope>7TO</scope><scope>7XB</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>LK8</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-1872-1397</orcidid><orcidid>https://orcid.org/0000-0002-8707-2511</orcidid><orcidid>https://orcid.org/0000-0001-6692-8803</orcidid></search><sort><creationdate>20220615</creationdate><title>The Breast Cancer Protein Co-Expression Landscape</title><author>Ruhle, Martín ; Espinal-Enríquez, Jesús ; Hernández-Lemus, Enrique</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-a58a958bdca8dad0a02034d0f20a28ed6fa688cb527e20a4544091d0bc5ace6f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Breast cancer</topic><topic>Cancer</topic><topic>Development and progression</topic><topic>Gene expression</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Mass spectrometry</topic><topic>Oncology, Experimental</topic><topic>Phenotypes</topic><topic>Protein expression</topic><topic>Protein-protein interactions</topic><topic>Proteins</topic><topic>Proteomics</topic><topic>Quality control</topic><topic>Random variables</topic><topic>Scientific imaging</topic><topic>Transcriptomics</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ruhle, Martín</creatorcontrib><creatorcontrib>Espinal-Enríquez, Jesús</creatorcontrib><creatorcontrib>Hernández-Lemus, Enrique</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Cancers</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ruhle, Martín</au><au>Espinal-Enríquez, Jesús</au><au>Hernández-Lemus, Enrique</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Breast Cancer Protein Co-Expression Landscape</atitle><jtitle>Cancers</jtitle><addtitle>Cancers (Basel)</addtitle><date>2022-06-15</date><risdate>2022</risdate><volume>14</volume><issue>12</issue><spage>2957</spage><pages>2957-</pages><issn>2072-6694</issn><eissn>2072-6694</eissn><abstract>Breast cancer is a complex phenotype (or better yet, several complex phenotypes) characterized by the interplay of a large number of cellular and biomolecular entities. Biological networks have been successfully used to capture some of the heterogeneity of intricate pathophenotypes, including cancer. Gene coexpression networks, in particular, have been used to study large-scale regulatory patterns. Ultimately, biological processes are carried out by proteins and their complexes. However, to date, most of the tumor profiling research has focused on the genomic and transcriptomic information. Here, we tried to expand this profiling through the analysis of open proteomic data via mutual information co-expression networks' analysis. We could observe that there are distinctive biological processes associated with communities of these networks and how some transcriptional co-expression phenomena are lost at the protein level. These kinds of data and network analyses are a broad resource to explore cellular behavior and cancer research.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>35740621</pmid><doi>10.3390/cancers14122957</doi><orcidid>https://orcid.org/0000-0002-1872-1397</orcidid><orcidid>https://orcid.org/0000-0002-8707-2511</orcidid><orcidid>https://orcid.org/0000-0001-6692-8803</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2072-6694
ispartof Cancers, 2022-06, Vol.14 (12), p.2957
issn 2072-6694
2072-6694
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9221059
source PubMed Central Open Access; MDPI - Multidisciplinary Digital Publishing Institute; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Breast cancer
Cancer
Development and progression
Gene expression
Genetic aspects
Genomes
Mass spectrometry
Oncology, Experimental
Phenotypes
Protein expression
Protein-protein interactions
Proteins
Proteomics
Quality control
Random variables
Scientific imaging
Transcriptomics
Tumors
title The Breast Cancer Protein Co-Expression Landscape
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A17%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Breast%20Cancer%20Protein%20Co-Expression%20Landscape&rft.jtitle=Cancers&rft.au=Ruhle,%20Mart%C3%ADn&rft.date=2022-06-15&rft.volume=14&rft.issue=12&rft.spage=2957&rft.pages=2957-&rft.issn=2072-6694&rft.eissn=2072-6694&rft_id=info:doi/10.3390/cancers14122957&rft_dat=%3Cgale_pubme%3EA722088338%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2679677506&rft_id=info:pmid/35740621&rft_galeid=A722088338&rfr_iscdi=true