A novel workflow to fabricate a patient-specific 3D printed accommodative foot orthosis with personalized latticed metamaterial

•A metamaterial design allows patient-specific insole stiffness.•A novel workflow to fabricate custom 3D printed elastomeric insoles was presented.•3D printed insoles matched or improved durability and a reduced shear stiffness.•3D printed insoles reduced regional plantar pressure compared to standa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Medical engineering & physics 2022-06, Vol.104, p.103802-103802, Article 103802
Hauptverfasser: Hudak, Yuri F, Li, Jing-Sheng, Cullum, Scott, Strzelecki, Brian M, Richburg, Chris, Kaufman, G Eli, Abrahamson, Daniel, Heckman, Jeffrey T., Ripley, Beth, Telfer, Scott, Ledoux, William R, Muir, Brittney C, Aubin, Patrick M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 103802
container_issue
container_start_page 103802
container_title Medical engineering & physics
container_volume 104
creator Hudak, Yuri F
Li, Jing-Sheng
Cullum, Scott
Strzelecki, Brian M
Richburg, Chris
Kaufman, G Eli
Abrahamson, Daniel
Heckman, Jeffrey T.
Ripley, Beth
Telfer, Scott
Ledoux, William R
Muir, Brittney C
Aubin, Patrick M
description •A metamaterial design allows patient-specific insole stiffness.•A novel workflow to fabricate custom 3D printed elastomeric insoles was presented.•3D printed insoles matched or improved durability and a reduced shear stiffness.•3D printed insoles reduced regional plantar pressure compared to standard insoles. Patients with diabetes mellitus are at elevated risk for secondary complications that result in lower extremity amputations. Standard of care to prevent these complications involves prescribing custom accommodative insoles that use inefficient and outdated fabrication processes including milling and hand carving. A new thrust of custom 3D printed insoles has shown promise in producing corrective insoles but has not explored accommodative diabetic insoles. Our novel contribution is a metamaterial design application that allows the insole stiffness to vary regionally following patient-specific plantar pressure measurements. We presented a novel workflow to fabricate custom 3D printed elastomeric insoles, a testing method to evaluate the durability, shear stiffness, and compressive stiffness of insole material samples, and a case study to demonstrate how the novel 3D printed insoles performed clinically. Our 3D printed insoles results showed a matched or improved durability, a reduced shear stiffness, and a reduction in plantar pressure in clinical case study compared to standard of care insoles.
doi_str_mv 10.1016/j.medengphy.2022.103802
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9210925</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1350453322000510</els_id><sourcerecordid>2672322969</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-c611e07c0557c8428f5a22655b06a39fefc9fe117f1b15d86cfa91547d90a9d43</originalsourceid><addsrcrecordid>eNqFkU1vEzEQhi0EoqXwF8BHLhv87d0LUlQ-pUpc4Gw53nHj4F0vtpOoXPjruEqJ4MTFHo2fecczL0KvKFlRQtWb3WqCEebbZXu3YoSxluU9YY_QJe017wTh5HGLuSSdkJxfoGel7AghQij-FF1wqQQlml2iX2s8pwNEfEz5u4_piGvC3m5ycLYCtnixNcBcu7KACz44zN_hJYe5woitc2ma0tiQA2CfUsUp120qoeBjqFu8QC5ptjH8bHS0tQbXggmqnZp6DjY-R0-8jQVePNxX6NuH91-vP3U3Xz5-vl7fdE5oWTunKAWiHZFSu16w3kvLmJJyQ5Tlgwfv2kGp9nRD5dgr5-1ApdDjQOwwCn6F3p50l_2mrc61kbKNpk0y2Xxnkg3m35c5bM1tOpiBUTIw2QRePwjk9GMPpZopFAcx2hnSvhimNOOMDWpoqD6hLqdSMvhzG0rMvX1mZ872mXv7zMm-Vvny71-e6_741YD1CYC2q0OAbIpr9rSthgyumjGF_zb5DYkJtAY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2672322969</pqid></control><display><type>article</type><title>A novel workflow to fabricate a patient-specific 3D printed accommodative foot orthosis with personalized latticed metamaterial</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Hudak, Yuri F ; Li, Jing-Sheng ; Cullum, Scott ; Strzelecki, Brian M ; Richburg, Chris ; Kaufman, G Eli ; Abrahamson, Daniel ; Heckman, Jeffrey T. ; Ripley, Beth ; Telfer, Scott ; Ledoux, William R ; Muir, Brittney C ; Aubin, Patrick M</creator><creatorcontrib>Hudak, Yuri F ; Li, Jing-Sheng ; Cullum, Scott ; Strzelecki, Brian M ; Richburg, Chris ; Kaufman, G Eli ; Abrahamson, Daniel ; Heckman, Jeffrey T. ; Ripley, Beth ; Telfer, Scott ; Ledoux, William R ; Muir, Brittney C ; Aubin, Patrick M</creatorcontrib><description>•A metamaterial design allows patient-specific insole stiffness.•A novel workflow to fabricate custom 3D printed elastomeric insoles was presented.•3D printed insoles matched or improved durability and a reduced shear stiffness.•3D printed insoles reduced regional plantar pressure compared to standard insoles. Patients with diabetes mellitus are at elevated risk for secondary complications that result in lower extremity amputations. Standard of care to prevent these complications involves prescribing custom accommodative insoles that use inefficient and outdated fabrication processes including milling and hand carving. A new thrust of custom 3D printed insoles has shown promise in producing corrective insoles but has not explored accommodative diabetic insoles. Our novel contribution is a metamaterial design application that allows the insole stiffness to vary regionally following patient-specific plantar pressure measurements. We presented a novel workflow to fabricate custom 3D printed elastomeric insoles, a testing method to evaluate the durability, shear stiffness, and compressive stiffness of insole material samples, and a case study to demonstrate how the novel 3D printed insoles performed clinically. Our 3D printed insoles results showed a matched or improved durability, a reduced shear stiffness, and a reduction in plantar pressure in clinical case study compared to standard of care insoles.</description><identifier>ISSN: 1350-4533</identifier><identifier>EISSN: 1873-4030</identifier><identifier>DOI: 10.1016/j.medengphy.2022.103802</identifier><identifier>PMID: 35641072</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Accommodative foot orthosis ; Additive manufacturing ; Durability ; Foot Orthoses ; Foot ulceration ; Humans ; Mechanical properties ; Personalized medicine ; Plantar pressure ; Pressure ; Printing, Three-Dimensional ; Shear stiffness ; Shoes ; Workflow</subject><ispartof>Medical engineering &amp; physics, 2022-06, Vol.104, p.103802-103802, Article 103802</ispartof><rights>2022</rights><rights>Copyright © 2022. Published by Elsevier Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-c611e07c0557c8428f5a22655b06a39fefc9fe117f1b15d86cfa91547d90a9d43</citedby><cites>FETCH-LOGICAL-c475t-c611e07c0557c8428f5a22655b06a39fefc9fe117f1b15d86cfa91547d90a9d43</cites><orcidid>0000-0002-5691-8473 ; 0000-0002-1705-9020 ; 0000-0002-8753-7104 ; 0000-0001-9695-5589</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S1350453322000510$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35641072$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hudak, Yuri F</creatorcontrib><creatorcontrib>Li, Jing-Sheng</creatorcontrib><creatorcontrib>Cullum, Scott</creatorcontrib><creatorcontrib>Strzelecki, Brian M</creatorcontrib><creatorcontrib>Richburg, Chris</creatorcontrib><creatorcontrib>Kaufman, G Eli</creatorcontrib><creatorcontrib>Abrahamson, Daniel</creatorcontrib><creatorcontrib>Heckman, Jeffrey T.</creatorcontrib><creatorcontrib>Ripley, Beth</creatorcontrib><creatorcontrib>Telfer, Scott</creatorcontrib><creatorcontrib>Ledoux, William R</creatorcontrib><creatorcontrib>Muir, Brittney C</creatorcontrib><creatorcontrib>Aubin, Patrick M</creatorcontrib><title>A novel workflow to fabricate a patient-specific 3D printed accommodative foot orthosis with personalized latticed metamaterial</title><title>Medical engineering &amp; physics</title><addtitle>Med Eng Phys</addtitle><description>•A metamaterial design allows patient-specific insole stiffness.•A novel workflow to fabricate custom 3D printed elastomeric insoles was presented.•3D printed insoles matched or improved durability and a reduced shear stiffness.•3D printed insoles reduced regional plantar pressure compared to standard insoles. Patients with diabetes mellitus are at elevated risk for secondary complications that result in lower extremity amputations. Standard of care to prevent these complications involves prescribing custom accommodative insoles that use inefficient and outdated fabrication processes including milling and hand carving. A new thrust of custom 3D printed insoles has shown promise in producing corrective insoles but has not explored accommodative diabetic insoles. Our novel contribution is a metamaterial design application that allows the insole stiffness to vary regionally following patient-specific plantar pressure measurements. We presented a novel workflow to fabricate custom 3D printed elastomeric insoles, a testing method to evaluate the durability, shear stiffness, and compressive stiffness of insole material samples, and a case study to demonstrate how the novel 3D printed insoles performed clinically. Our 3D printed insoles results showed a matched or improved durability, a reduced shear stiffness, and a reduction in plantar pressure in clinical case study compared to standard of care insoles.</description><subject>Accommodative foot orthosis</subject><subject>Additive manufacturing</subject><subject>Durability</subject><subject>Foot Orthoses</subject><subject>Foot ulceration</subject><subject>Humans</subject><subject>Mechanical properties</subject><subject>Personalized medicine</subject><subject>Plantar pressure</subject><subject>Pressure</subject><subject>Printing, Three-Dimensional</subject><subject>Shear stiffness</subject><subject>Shoes</subject><subject>Workflow</subject><issn>1350-4533</issn><issn>1873-4030</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1vEzEQhi0EoqXwF8BHLhv87d0LUlQ-pUpc4Gw53nHj4F0vtpOoXPjruEqJ4MTFHo2fecczL0KvKFlRQtWb3WqCEebbZXu3YoSxluU9YY_QJe017wTh5HGLuSSdkJxfoGel7AghQij-FF1wqQQlml2iX2s8pwNEfEz5u4_piGvC3m5ycLYCtnixNcBcu7KACz44zN_hJYe5woitc2ma0tiQA2CfUsUp120qoeBjqFu8QC5ptjH8bHS0tQbXggmqnZp6DjY-R0-8jQVePNxX6NuH91-vP3U3Xz5-vl7fdE5oWTunKAWiHZFSu16w3kvLmJJyQ5Tlgwfv2kGp9nRD5dgr5-1ApdDjQOwwCn6F3p50l_2mrc61kbKNpk0y2Xxnkg3m35c5bM1tOpiBUTIw2QRePwjk9GMPpZopFAcx2hnSvhimNOOMDWpoqD6hLqdSMvhzG0rMvX1mZ872mXv7zMm-Vvny71-e6_741YD1CYC2q0OAbIpr9rSthgyumjGF_zb5DYkJtAY</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Hudak, Yuri F</creator><creator>Li, Jing-Sheng</creator><creator>Cullum, Scott</creator><creator>Strzelecki, Brian M</creator><creator>Richburg, Chris</creator><creator>Kaufman, G Eli</creator><creator>Abrahamson, Daniel</creator><creator>Heckman, Jeffrey T.</creator><creator>Ripley, Beth</creator><creator>Telfer, Scott</creator><creator>Ledoux, William R</creator><creator>Muir, Brittney C</creator><creator>Aubin, Patrick M</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5691-8473</orcidid><orcidid>https://orcid.org/0000-0002-1705-9020</orcidid><orcidid>https://orcid.org/0000-0002-8753-7104</orcidid><orcidid>https://orcid.org/0000-0001-9695-5589</orcidid></search><sort><creationdate>20220601</creationdate><title>A novel workflow to fabricate a patient-specific 3D printed accommodative foot orthosis with personalized latticed metamaterial</title><author>Hudak, Yuri F ; Li, Jing-Sheng ; Cullum, Scott ; Strzelecki, Brian M ; Richburg, Chris ; Kaufman, G Eli ; Abrahamson, Daniel ; Heckman, Jeffrey T. ; Ripley, Beth ; Telfer, Scott ; Ledoux, William R ; Muir, Brittney C ; Aubin, Patrick M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-c611e07c0557c8428f5a22655b06a39fefc9fe117f1b15d86cfa91547d90a9d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accommodative foot orthosis</topic><topic>Additive manufacturing</topic><topic>Durability</topic><topic>Foot Orthoses</topic><topic>Foot ulceration</topic><topic>Humans</topic><topic>Mechanical properties</topic><topic>Personalized medicine</topic><topic>Plantar pressure</topic><topic>Pressure</topic><topic>Printing, Three-Dimensional</topic><topic>Shear stiffness</topic><topic>Shoes</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hudak, Yuri F</creatorcontrib><creatorcontrib>Li, Jing-Sheng</creatorcontrib><creatorcontrib>Cullum, Scott</creatorcontrib><creatorcontrib>Strzelecki, Brian M</creatorcontrib><creatorcontrib>Richburg, Chris</creatorcontrib><creatorcontrib>Kaufman, G Eli</creatorcontrib><creatorcontrib>Abrahamson, Daniel</creatorcontrib><creatorcontrib>Heckman, Jeffrey T.</creatorcontrib><creatorcontrib>Ripley, Beth</creatorcontrib><creatorcontrib>Telfer, Scott</creatorcontrib><creatorcontrib>Ledoux, William R</creatorcontrib><creatorcontrib>Muir, Brittney C</creatorcontrib><creatorcontrib>Aubin, Patrick M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Medical engineering &amp; physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hudak, Yuri F</au><au>Li, Jing-Sheng</au><au>Cullum, Scott</au><au>Strzelecki, Brian M</au><au>Richburg, Chris</au><au>Kaufman, G Eli</au><au>Abrahamson, Daniel</au><au>Heckman, Jeffrey T.</au><au>Ripley, Beth</au><au>Telfer, Scott</au><au>Ledoux, William R</au><au>Muir, Brittney C</au><au>Aubin, Patrick M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel workflow to fabricate a patient-specific 3D printed accommodative foot orthosis with personalized latticed metamaterial</atitle><jtitle>Medical engineering &amp; physics</jtitle><addtitle>Med Eng Phys</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>104</volume><spage>103802</spage><epage>103802</epage><pages>103802-103802</pages><artnum>103802</artnum><issn>1350-4533</issn><eissn>1873-4030</eissn><abstract>•A metamaterial design allows patient-specific insole stiffness.•A novel workflow to fabricate custom 3D printed elastomeric insoles was presented.•3D printed insoles matched or improved durability and a reduced shear stiffness.•3D printed insoles reduced regional plantar pressure compared to standard insoles. Patients with diabetes mellitus are at elevated risk for secondary complications that result in lower extremity amputations. Standard of care to prevent these complications involves prescribing custom accommodative insoles that use inefficient and outdated fabrication processes including milling and hand carving. A new thrust of custom 3D printed insoles has shown promise in producing corrective insoles but has not explored accommodative diabetic insoles. Our novel contribution is a metamaterial design application that allows the insole stiffness to vary regionally following patient-specific plantar pressure measurements. We presented a novel workflow to fabricate custom 3D printed elastomeric insoles, a testing method to evaluate the durability, shear stiffness, and compressive stiffness of insole material samples, and a case study to demonstrate how the novel 3D printed insoles performed clinically. Our 3D printed insoles results showed a matched or improved durability, a reduced shear stiffness, and a reduction in plantar pressure in clinical case study compared to standard of care insoles.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>35641072</pmid><doi>10.1016/j.medengphy.2022.103802</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5691-8473</orcidid><orcidid>https://orcid.org/0000-0002-1705-9020</orcidid><orcidid>https://orcid.org/0000-0002-8753-7104</orcidid><orcidid>https://orcid.org/0000-0001-9695-5589</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1350-4533
ispartof Medical engineering & physics, 2022-06, Vol.104, p.103802-103802, Article 103802
issn 1350-4533
1873-4030
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9210925
source MEDLINE; Elsevier ScienceDirect Journals
subjects Accommodative foot orthosis
Additive manufacturing
Durability
Foot Orthoses
Foot ulceration
Humans
Mechanical properties
Personalized medicine
Plantar pressure
Pressure
Printing, Three-Dimensional
Shear stiffness
Shoes
Workflow
title A novel workflow to fabricate a patient-specific 3D printed accommodative foot orthosis with personalized latticed metamaterial
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T17%3A18%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20workflow%20to%20fabricate%20a%20patient-specific%203D%20printed%20accommodative%20foot%20orthosis%20with%20personalized%20latticed%20metamaterial&rft.jtitle=Medical%20engineering%20&%20physics&rft.au=Hudak,%20Yuri%20F&rft.date=2022-06-01&rft.volume=104&rft.spage=103802&rft.epage=103802&rft.pages=103802-103802&rft.artnum=103802&rft.issn=1350-4533&rft.eissn=1873-4030&rft_id=info:doi/10.1016/j.medengphy.2022.103802&rft_dat=%3Cproquest_pubme%3E2672322969%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2672322969&rft_id=info:pmid/35641072&rft_els_id=S1350453322000510&rfr_iscdi=true