Machine learning model to predict mental health crises from electronic health records
The timely identification of patients who are at risk of a mental health crisis can lead to improved outcomes and to the mitigation of burdens and costs. However, the high prevalence of mental health problems means that the manual review of complex patient records to make proactive care decisions is...
Gespeichert in:
Veröffentlicht in: | Nature medicine 2022-06, Vol.28 (6), p.1240-1248 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1248 |
---|---|
container_issue | 6 |
container_start_page | 1240 |
container_title | Nature medicine |
container_volume | 28 |
creator | Garriga, Roger Mas, Javier Abraha, Semhar Nolan, Jon Harrison, Oliver Tadros, George Matic, Aleksandar |
description | The timely identification of patients who are at risk of a mental health crisis can lead to improved outcomes and to the mitigation of burdens and costs. However, the high prevalence of mental health problems means that the manual review of complex patient records to make proactive care decisions is not feasible in practice. Therefore, we developed a machine learning model that uses electronic health records to continuously monitor patients for risk of a mental health crisis over a period of 28 days. The model achieves an area under the receiver operating characteristic curve of 0.797 and an area under the precision-recall curve of 0.159, predicting crises with a sensitivity of 58% at a specificity of 85%. A follow-up 6-month prospective study evaluated our algorithm’s use in clinical practice and observed predictions to be clinically valuable in terms of either managing caseloads or mitigating the risk of crisis in 64% of cases. To our knowledge, this study is the first to continuously predict the risk of a wide range of mental health crises and to explore the added value of such predictions in clinical practice.
Machine learning applied on electronic health records can predict mental health crises 28 days in advance and become a clinically valuable tool for managing caseloads and mitigating the risk of crisis. |
doi_str_mv | 10.1038/s41591-022-01811-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9205775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2677954758</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-cd49fd9251bd10c30af1772fef03525839db47409fa4eeacc7ae746dd624117c3</originalsourceid><addsrcrecordid>eNp9kU1LXDEYhUOpVDvtH3BRAt24uW0-b242QpFqCxY3Cu5CJnnvTCQ3GZM7hf77RseP2oWrBM6Tk_O-B6FDSr5QwoevVVCpaUcY6wgdKO3kG3RApeg7qsj123YnaugGLft99L7WG0IIJ1K_Q_tcSqV0Lw7Q1S_r1iEBjmBLCmmFp-wh4jnjTQEf3IwnSLONeA02zmvsSqhQ8VjyhCGCm0tOwT2qBVwuvn5Ae6ONFT4-nAt0dfr98uRHd35x9vPk23nnhBJz57zQo9dM0qWnxHFiR6oUG2EkXDI5cO2XDSR6tALAOqcsKNF73zNBqXJ8gY53vpvtcgLvWtJio9mUMNnyx2QbzEslhbVZ5d9GM9I2IJvB0YNBybdbqLOZQnUQo02Qt9WwvpdS6oGThn7-D73J25LaeI1q25RCtcQLxHaUK7nWAuNTGErMXWtm15pprZn71sxdik__jvH05LGmBvAdUJuUVlCe_37F9i9Mm6RH</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677954758</pqid></control><display><type>article</type><title>Machine learning model to predict mental health crises from electronic health records</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Garriga, Roger ; Mas, Javier ; Abraha, Semhar ; Nolan, Jon ; Harrison, Oliver ; Tadros, George ; Matic, Aleksandar</creator><creatorcontrib>Garriga, Roger ; Mas, Javier ; Abraha, Semhar ; Nolan, Jon ; Harrison, Oliver ; Tadros, George ; Matic, Aleksandar</creatorcontrib><description>The timely identification of patients who are at risk of a mental health crisis can lead to improved outcomes and to the mitigation of burdens and costs. However, the high prevalence of mental health problems means that the manual review of complex patient records to make proactive care decisions is not feasible in practice. Therefore, we developed a machine learning model that uses electronic health records to continuously monitor patients for risk of a mental health crisis over a period of 28 days. The model achieves an area under the receiver operating characteristic curve of 0.797 and an area under the precision-recall curve of 0.159, predicting crises with a sensitivity of 58% at a specificity of 85%. A follow-up 6-month prospective study evaluated our algorithm’s use in clinical practice and observed predictions to be clinically valuable in terms of either managing caseloads or mitigating the risk of crisis in 64% of cases. To our knowledge, this study is the first to continuously predict the risk of a wide range of mental health crises and to explore the added value of such predictions in clinical practice.
Machine learning applied on electronic health records can predict mental health crises 28 days in advance and become a clinically valuable tool for managing caseloads and mitigating the risk of crisis.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/s41591-022-01811-5</identifier><identifier>PMID: 35577964</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/477 ; 692/53/2423 ; 692/700 ; Algorithms ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Clinical medicine ; Crises ; Electronic health records ; Electronic medical records ; Health problems ; Infectious Diseases ; Learning algorithms ; Machine learning ; Mental disorders ; Mental health ; Metabolic Diseases ; Molecular Medicine ; Neurosciences ; Patients ; Risk ; Risk reduction</subject><ispartof>Nature medicine, 2022-06, Vol.28 (6), p.1240-1248</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-cd49fd9251bd10c30af1772fef03525839db47409fa4eeacc7ae746dd624117c3</citedby><cites>FETCH-LOGICAL-c474t-cd49fd9251bd10c30af1772fef03525839db47409fa4eeacc7ae746dd624117c3</cites><orcidid>0000-0002-5836-5534 ; 0000-0001-6947-2581 ; 0000-0002-8752-4098 ; 0000-0003-3206-6293 ; 0000-0002-3581-8959</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41591-022-01811-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41591-022-01811-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35577964$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garriga, Roger</creatorcontrib><creatorcontrib>Mas, Javier</creatorcontrib><creatorcontrib>Abraha, Semhar</creatorcontrib><creatorcontrib>Nolan, Jon</creatorcontrib><creatorcontrib>Harrison, Oliver</creatorcontrib><creatorcontrib>Tadros, George</creatorcontrib><creatorcontrib>Matic, Aleksandar</creatorcontrib><title>Machine learning model to predict mental health crises from electronic health records</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>The timely identification of patients who are at risk of a mental health crisis can lead to improved outcomes and to the mitigation of burdens and costs. However, the high prevalence of mental health problems means that the manual review of complex patient records to make proactive care decisions is not feasible in practice. Therefore, we developed a machine learning model that uses electronic health records to continuously monitor patients for risk of a mental health crisis over a period of 28 days. The model achieves an area under the receiver operating characteristic curve of 0.797 and an area under the precision-recall curve of 0.159, predicting crises with a sensitivity of 58% at a specificity of 85%. A follow-up 6-month prospective study evaluated our algorithm’s use in clinical practice and observed predictions to be clinically valuable in terms of either managing caseloads or mitigating the risk of crisis in 64% of cases. To our knowledge, this study is the first to continuously predict the risk of a wide range of mental health crises and to explore the added value of such predictions in clinical practice.
Machine learning applied on electronic health records can predict mental health crises 28 days in advance and become a clinically valuable tool for managing caseloads and mitigating the risk of crisis.</description><subject>631/477</subject><subject>692/53/2423</subject><subject>692/700</subject><subject>Algorithms</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Clinical medicine</subject><subject>Crises</subject><subject>Electronic health records</subject><subject>Electronic medical records</subject><subject>Health problems</subject><subject>Infectious Diseases</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Mental disorders</subject><subject>Mental health</subject><subject>Metabolic Diseases</subject><subject>Molecular Medicine</subject><subject>Neurosciences</subject><subject>Patients</subject><subject>Risk</subject><subject>Risk reduction</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kU1LXDEYhUOpVDvtH3BRAt24uW0-b242QpFqCxY3Cu5CJnnvTCQ3GZM7hf77RseP2oWrBM6Tk_O-B6FDSr5QwoevVVCpaUcY6wgdKO3kG3RApeg7qsj123YnaugGLft99L7WG0IIJ1K_Q_tcSqV0Lw7Q1S_r1iEBjmBLCmmFp-wh4jnjTQEf3IwnSLONeA02zmvsSqhQ8VjyhCGCm0tOwT2qBVwuvn5Ae6ONFT4-nAt0dfr98uRHd35x9vPk23nnhBJz57zQo9dM0qWnxHFiR6oUG2EkXDI5cO2XDSR6tALAOqcsKNF73zNBqXJ8gY53vpvtcgLvWtJio9mUMNnyx2QbzEslhbVZ5d9GM9I2IJvB0YNBybdbqLOZQnUQo02Qt9WwvpdS6oGThn7-D73J25LaeI1q25RCtcQLxHaUK7nWAuNTGErMXWtm15pprZn71sxdik__jvH05LGmBvAdUJuUVlCe_37F9i9Mm6RH</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Garriga, Roger</creator><creator>Mas, Javier</creator><creator>Abraha, Semhar</creator><creator>Nolan, Jon</creator><creator>Harrison, Oliver</creator><creator>Tadros, George</creator><creator>Matic, Aleksandar</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5836-5534</orcidid><orcidid>https://orcid.org/0000-0001-6947-2581</orcidid><orcidid>https://orcid.org/0000-0002-8752-4098</orcidid><orcidid>https://orcid.org/0000-0003-3206-6293</orcidid><orcidid>https://orcid.org/0000-0002-3581-8959</orcidid></search><sort><creationdate>20220601</creationdate><title>Machine learning model to predict mental health crises from electronic health records</title><author>Garriga, Roger ; Mas, Javier ; Abraha, Semhar ; Nolan, Jon ; Harrison, Oliver ; Tadros, George ; Matic, Aleksandar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-cd49fd9251bd10c30af1772fef03525839db47409fa4eeacc7ae746dd624117c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>631/477</topic><topic>692/53/2423</topic><topic>692/700</topic><topic>Algorithms</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Clinical medicine</topic><topic>Crises</topic><topic>Electronic health records</topic><topic>Electronic medical records</topic><topic>Health problems</topic><topic>Infectious Diseases</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Mental disorders</topic><topic>Mental health</topic><topic>Metabolic Diseases</topic><topic>Molecular Medicine</topic><topic>Neurosciences</topic><topic>Patients</topic><topic>Risk</topic><topic>Risk reduction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garriga, Roger</creatorcontrib><creatorcontrib>Mas, Javier</creatorcontrib><creatorcontrib>Abraha, Semhar</creatorcontrib><creatorcontrib>Nolan, Jon</creatorcontrib><creatorcontrib>Harrison, Oliver</creatorcontrib><creatorcontrib>Tadros, George</creatorcontrib><creatorcontrib>Matic, Aleksandar</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garriga, Roger</au><au>Mas, Javier</au><au>Abraha, Semhar</au><au>Nolan, Jon</au><au>Harrison, Oliver</au><au>Tadros, George</au><au>Matic, Aleksandar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning model to predict mental health crises from electronic health records</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>28</volume><issue>6</issue><spage>1240</spage><epage>1248</epage><pages>1240-1248</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>The timely identification of patients who are at risk of a mental health crisis can lead to improved outcomes and to the mitigation of burdens and costs. However, the high prevalence of mental health problems means that the manual review of complex patient records to make proactive care decisions is not feasible in practice. Therefore, we developed a machine learning model that uses electronic health records to continuously monitor patients for risk of a mental health crisis over a period of 28 days. The model achieves an area under the receiver operating characteristic curve of 0.797 and an area under the precision-recall curve of 0.159, predicting crises with a sensitivity of 58% at a specificity of 85%. A follow-up 6-month prospective study evaluated our algorithm’s use in clinical practice and observed predictions to be clinically valuable in terms of either managing caseloads or mitigating the risk of crisis in 64% of cases. To our knowledge, this study is the first to continuously predict the risk of a wide range of mental health crises and to explore the added value of such predictions in clinical practice.
Machine learning applied on electronic health records can predict mental health crises 28 days in advance and become a clinically valuable tool for managing caseloads and mitigating the risk of crisis.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>35577964</pmid><doi>10.1038/s41591-022-01811-5</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-5836-5534</orcidid><orcidid>https://orcid.org/0000-0001-6947-2581</orcidid><orcidid>https://orcid.org/0000-0002-8752-4098</orcidid><orcidid>https://orcid.org/0000-0003-3206-6293</orcidid><orcidid>https://orcid.org/0000-0002-3581-8959</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-8956 |
ispartof | Nature medicine, 2022-06, Vol.28 (6), p.1240-1248 |
issn | 1078-8956 1546-170X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9205775 |
source | Nature; SpringerLink Journals - AutoHoldings |
subjects | 631/477 692/53/2423 692/700 Algorithms Biomedical and Life Sciences Biomedicine Cancer Research Clinical medicine Crises Electronic health records Electronic medical records Health problems Infectious Diseases Learning algorithms Machine learning Mental disorders Mental health Metabolic Diseases Molecular Medicine Neurosciences Patients Risk Risk reduction |
title | Machine learning model to predict mental health crises from electronic health records |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T11%3A29%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20model%20to%20predict%20mental%20health%20crises%20from%20electronic%20health%20records&rft.jtitle=Nature%20medicine&rft.au=Garriga,%20Roger&rft.date=2022-06-01&rft.volume=28&rft.issue=6&rft.spage=1240&rft.epage=1248&rft.pages=1240-1248&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/s41591-022-01811-5&rft_dat=%3Cproquest_pubme%3E2677954758%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677954758&rft_id=info:pmid/35577964&rfr_iscdi=true |