Mouse models of immune dysfunction: their neuroanatomical differences reflect their anxiety-behavioural phenotype
Extensive evidence supports the role of the immune system in modulating brain function and behaviour. However, past studies have revealed striking heterogeneity in behavioural phenotypes produced from immune system dysfunction. Using magnetic resonance imaging, we studied the neuroanatomical differe...
Gespeichert in:
Veröffentlicht in: | Molecular psychiatry 2022-07, Vol.27 (7), p.3047-3055 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3055 |
---|---|
container_issue | 7 |
container_start_page | 3047 |
container_title | Molecular psychiatry |
container_volume | 27 |
creator | Fernandes, Darren J. Spring, Shoshana Corre, Christina Tu, Andrew Qiu, Lily R. Hammill, Christopher Vousden, Dulcie A. Spencer Noakes, T. Leigh Nieman, Brian J. Bowdish, Dawn M. E. Foster, Jane A. Palmert, Mark R. Lerch, Jason P. |
description | Extensive evidence supports the role of the immune system in modulating brain function and behaviour. However, past studies have revealed striking heterogeneity in behavioural phenotypes produced from immune system dysfunction. Using magnetic resonance imaging, we studied the neuroanatomical differences among 11 distinct genetically modified mouse lines (
n
= 371), each deficient in a different element of the immune system. We found a significant and heterogeneous effect of immune dysfunction on the brains of both male and female mice. However, by imaging the whole brain and using Bayesian hierarchical modelling, we were able to identify patterns within the heterogeneous phenotype. Certain structures—such as the corpus callosum, midbrain, and thalamus—were more likely to be affected by immune dysfunction. A notable brain–behaviour relationship was identified with neuroanatomy endophenotypes across mouse models clustering according to anxiety-like behaviour phenotypes reported in literature, such as altered volume in brains regions associated with promoting fear response (e.g., the lateral septum and cerebellum). Interestingly, genes with preferential spatial expression in the most commonly affected regions are also associated with multiple sclerosis and other immune-mediated diseases. In total, our data suggest that the immune system modulates anxiety behaviour through well-established brain networks. |
doi_str_mv | 10.1038/s41380-022-01535-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9205773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2677954939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c474t-e533d6bd8c12b5de0199815ef4ca5248f42d5f24269db2f006b634a7f738a893</originalsourceid><addsrcrecordid>eNp9kctuFDEQRVsIRB7wAyxQS2zYGPxsu1kgoYgAUhCb7C23Xc446rYntjti_h4PM4THgpVLqlPXt-p23QuC3xDM1NvCCVMYYUoRJoIJJB51p4TLAQkh1eNWMzEiThQ_6c5KucV43xRPuxMmOKVc4tPu7mtaC_RLcjCXPvk-LMsaoXe74tdoa0jxXV83EHIfYc3JRFPTEqyZexe8hwzRQukz-BlsPZImfg9Qd2iCjbkPac2N3m4gprrbwrPuiTdzgefH97y7vvx4ffEZXX379OXiwxWyXPKKQDDmhskpS-gkHGAyjooI8NwaQbnynDrhKafD6CbqMR6mgXEjvWTKqJGdd-8Pstt1WsBZiLXZ0NscFpN3Opmg_-7EsNE36V6PFAspWRN4fRTI6W6FUvUSioV5NhHazTQdBBmUHLhs6Kt_0Nu2dGzbNUrKUfCR7R3RA2VzKqVd7MEMwXofqD4Eqlug-megWrShl3-u8TDyK8EGsANQWiveQP79939kfwBmp67u</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677954939</pqid></control><display><type>article</type><title>Mouse models of immune dysfunction: their neuroanatomical differences reflect their anxiety-behavioural phenotype</title><source>SpringerNature Journals</source><creator>Fernandes, Darren J. ; Spring, Shoshana ; Corre, Christina ; Tu, Andrew ; Qiu, Lily R. ; Hammill, Christopher ; Vousden, Dulcie A. ; Spencer Noakes, T. Leigh ; Nieman, Brian J. ; Bowdish, Dawn M. E. ; Foster, Jane A. ; Palmert, Mark R. ; Lerch, Jason P.</creator><creatorcontrib>Fernandes, Darren J. ; Spring, Shoshana ; Corre, Christina ; Tu, Andrew ; Qiu, Lily R. ; Hammill, Christopher ; Vousden, Dulcie A. ; Spencer Noakes, T. Leigh ; Nieman, Brian J. ; Bowdish, Dawn M. E. ; Foster, Jane A. ; Palmert, Mark R. ; Lerch, Jason P.</creatorcontrib><description>Extensive evidence supports the role of the immune system in modulating brain function and behaviour. However, past studies have revealed striking heterogeneity in behavioural phenotypes produced from immune system dysfunction. Using magnetic resonance imaging, we studied the neuroanatomical differences among 11 distinct genetically modified mouse lines (
n
= 371), each deficient in a different element of the immune system. We found a significant and heterogeneous effect of immune dysfunction on the brains of both male and female mice. However, by imaging the whole brain and using Bayesian hierarchical modelling, we were able to identify patterns within the heterogeneous phenotype. Certain structures—such as the corpus callosum, midbrain, and thalamus—were more likely to be affected by immune dysfunction. A notable brain–behaviour relationship was identified with neuroanatomy endophenotypes across mouse models clustering according to anxiety-like behaviour phenotypes reported in literature, such as altered volume in brains regions associated with promoting fear response (e.g., the lateral septum and cerebellum). Interestingly, genes with preferential spatial expression in the most commonly affected regions are also associated with multiple sclerosis and other immune-mediated diseases. In total, our data suggest that the immune system modulates anxiety behaviour through well-established brain networks.</description><identifier>ISSN: 1359-4184</identifier><identifier>EISSN: 1476-5578</identifier><identifier>DOI: 10.1038/s41380-022-01535-5</identifier><identifier>PMID: 35422470</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>59/57 ; 631/208 ; 631/378 ; 64/60 ; Anatomy ; Animal models ; Anxiety ; Bayesian analysis ; Behavioral Sciences ; Biological Psychology ; Brain ; Brain architecture ; Cerebellum ; Corpus callosum ; Immune system ; Magnetic resonance imaging ; Mathematical models ; Medicine ; Medicine & Public Health ; Mesencephalon ; Multiple sclerosis ; Neuroimaging ; Neurosciences ; Pharmacotherapy ; Phenotypes ; Psychiatry ; Septum ; Thalamus</subject><ispartof>Molecular psychiatry, 2022-07, Vol.27 (7), p.3047-3055</ispartof><rights>The Author(s) 2022</rights><rights>2022. The Author(s).</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c474t-e533d6bd8c12b5de0199815ef4ca5248f42d5f24269db2f006b634a7f738a893</citedby><cites>FETCH-LOGICAL-c474t-e533d6bd8c12b5de0199815ef4ca5248f42d5f24269db2f006b634a7f738a893</cites><orcidid>0000-0002-0625-7515 ; 0000-0002-8579-4705</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41380-022-01535-5$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41380-022-01535-5$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35422470$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fernandes, Darren J.</creatorcontrib><creatorcontrib>Spring, Shoshana</creatorcontrib><creatorcontrib>Corre, Christina</creatorcontrib><creatorcontrib>Tu, Andrew</creatorcontrib><creatorcontrib>Qiu, Lily R.</creatorcontrib><creatorcontrib>Hammill, Christopher</creatorcontrib><creatorcontrib>Vousden, Dulcie A.</creatorcontrib><creatorcontrib>Spencer Noakes, T. Leigh</creatorcontrib><creatorcontrib>Nieman, Brian J.</creatorcontrib><creatorcontrib>Bowdish, Dawn M. E.</creatorcontrib><creatorcontrib>Foster, Jane A.</creatorcontrib><creatorcontrib>Palmert, Mark R.</creatorcontrib><creatorcontrib>Lerch, Jason P.</creatorcontrib><title>Mouse models of immune dysfunction: their neuroanatomical differences reflect their anxiety-behavioural phenotype</title><title>Molecular psychiatry</title><addtitle>Mol Psychiatry</addtitle><addtitle>Mol Psychiatry</addtitle><description>Extensive evidence supports the role of the immune system in modulating brain function and behaviour. However, past studies have revealed striking heterogeneity in behavioural phenotypes produced from immune system dysfunction. Using magnetic resonance imaging, we studied the neuroanatomical differences among 11 distinct genetically modified mouse lines (
n
= 371), each deficient in a different element of the immune system. We found a significant and heterogeneous effect of immune dysfunction on the brains of both male and female mice. However, by imaging the whole brain and using Bayesian hierarchical modelling, we were able to identify patterns within the heterogeneous phenotype. Certain structures—such as the corpus callosum, midbrain, and thalamus—were more likely to be affected by immune dysfunction. A notable brain–behaviour relationship was identified with neuroanatomy endophenotypes across mouse models clustering according to anxiety-like behaviour phenotypes reported in literature, such as altered volume in brains regions associated with promoting fear response (e.g., the lateral septum and cerebellum). Interestingly, genes with preferential spatial expression in the most commonly affected regions are also associated with multiple sclerosis and other immune-mediated diseases. In total, our data suggest that the immune system modulates anxiety behaviour through well-established brain networks.</description><subject>59/57</subject><subject>631/208</subject><subject>631/378</subject><subject>64/60</subject><subject>Anatomy</subject><subject>Animal models</subject><subject>Anxiety</subject><subject>Bayesian analysis</subject><subject>Behavioral Sciences</subject><subject>Biological Psychology</subject><subject>Brain</subject><subject>Brain architecture</subject><subject>Cerebellum</subject><subject>Corpus callosum</subject><subject>Immune system</subject><subject>Magnetic resonance imaging</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Medicine & Public Health</subject><subject>Mesencephalon</subject><subject>Multiple sclerosis</subject><subject>Neuroimaging</subject><subject>Neurosciences</subject><subject>Pharmacotherapy</subject><subject>Phenotypes</subject><subject>Psychiatry</subject><subject>Septum</subject><subject>Thalamus</subject><issn>1359-4184</issn><issn>1476-5578</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kctuFDEQRVsIRB7wAyxQS2zYGPxsu1kgoYgAUhCb7C23Xc446rYntjti_h4PM4THgpVLqlPXt-p23QuC3xDM1NvCCVMYYUoRJoIJJB51p4TLAQkh1eNWMzEiThQ_6c5KucV43xRPuxMmOKVc4tPu7mtaC_RLcjCXPvk-LMsaoXe74tdoa0jxXV83EHIfYc3JRFPTEqyZexe8hwzRQukz-BlsPZImfg9Qd2iCjbkPac2N3m4gprrbwrPuiTdzgefH97y7vvx4ffEZXX379OXiwxWyXPKKQDDmhskpS-gkHGAyjooI8NwaQbnynDrhKafD6CbqMR6mgXEjvWTKqJGdd-8Pstt1WsBZiLXZ0NscFpN3Opmg_-7EsNE36V6PFAspWRN4fRTI6W6FUvUSioV5NhHazTQdBBmUHLhs6Kt_0Nu2dGzbNUrKUfCR7R3RA2VzKqVd7MEMwXofqD4Eqlug-megWrShl3-u8TDyK8EGsANQWiveQP79939kfwBmp67u</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Fernandes, Darren J.</creator><creator>Spring, Shoshana</creator><creator>Corre, Christina</creator><creator>Tu, Andrew</creator><creator>Qiu, Lily R.</creator><creator>Hammill, Christopher</creator><creator>Vousden, Dulcie A.</creator><creator>Spencer Noakes, T. Leigh</creator><creator>Nieman, Brian J.</creator><creator>Bowdish, Dawn M. E.</creator><creator>Foster, Jane A.</creator><creator>Palmert, Mark R.</creator><creator>Lerch, Jason P.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0625-7515</orcidid><orcidid>https://orcid.org/0000-0002-8579-4705</orcidid></search><sort><creationdate>20220701</creationdate><title>Mouse models of immune dysfunction: their neuroanatomical differences reflect their anxiety-behavioural phenotype</title><author>Fernandes, Darren J. ; Spring, Shoshana ; Corre, Christina ; Tu, Andrew ; Qiu, Lily R. ; Hammill, Christopher ; Vousden, Dulcie A. ; Spencer Noakes, T. Leigh ; Nieman, Brian J. ; Bowdish, Dawn M. E. ; Foster, Jane A. ; Palmert, Mark R. ; Lerch, Jason P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c474t-e533d6bd8c12b5de0199815ef4ca5248f42d5f24269db2f006b634a7f738a893</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>59/57</topic><topic>631/208</topic><topic>631/378</topic><topic>64/60</topic><topic>Anatomy</topic><topic>Animal models</topic><topic>Anxiety</topic><topic>Bayesian analysis</topic><topic>Behavioral Sciences</topic><topic>Biological Psychology</topic><topic>Brain</topic><topic>Brain architecture</topic><topic>Cerebellum</topic><topic>Corpus callosum</topic><topic>Immune system</topic><topic>Magnetic resonance imaging</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Medicine & Public Health</topic><topic>Mesencephalon</topic><topic>Multiple sclerosis</topic><topic>Neuroimaging</topic><topic>Neurosciences</topic><topic>Pharmacotherapy</topic><topic>Phenotypes</topic><topic>Psychiatry</topic><topic>Septum</topic><topic>Thalamus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fernandes, Darren J.</creatorcontrib><creatorcontrib>Spring, Shoshana</creatorcontrib><creatorcontrib>Corre, Christina</creatorcontrib><creatorcontrib>Tu, Andrew</creatorcontrib><creatorcontrib>Qiu, Lily R.</creatorcontrib><creatorcontrib>Hammill, Christopher</creatorcontrib><creatorcontrib>Vousden, Dulcie A.</creatorcontrib><creatorcontrib>Spencer Noakes, T. Leigh</creatorcontrib><creatorcontrib>Nieman, Brian J.</creatorcontrib><creatorcontrib>Bowdish, Dawn M. E.</creatorcontrib><creatorcontrib>Foster, Jane A.</creatorcontrib><creatorcontrib>Palmert, Mark R.</creatorcontrib><creatorcontrib>Lerch, Jason P.</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular psychiatry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fernandes, Darren J.</au><au>Spring, Shoshana</au><au>Corre, Christina</au><au>Tu, Andrew</au><au>Qiu, Lily R.</au><au>Hammill, Christopher</au><au>Vousden, Dulcie A.</au><au>Spencer Noakes, T. Leigh</au><au>Nieman, Brian J.</au><au>Bowdish, Dawn M. E.</au><au>Foster, Jane A.</au><au>Palmert, Mark R.</au><au>Lerch, Jason P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mouse models of immune dysfunction: their neuroanatomical differences reflect their anxiety-behavioural phenotype</atitle><jtitle>Molecular psychiatry</jtitle><stitle>Mol Psychiatry</stitle><addtitle>Mol Psychiatry</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>27</volume><issue>7</issue><spage>3047</spage><epage>3055</epage><pages>3047-3055</pages><issn>1359-4184</issn><eissn>1476-5578</eissn><abstract>Extensive evidence supports the role of the immune system in modulating brain function and behaviour. However, past studies have revealed striking heterogeneity in behavioural phenotypes produced from immune system dysfunction. Using magnetic resonance imaging, we studied the neuroanatomical differences among 11 distinct genetically modified mouse lines (
n
= 371), each deficient in a different element of the immune system. We found a significant and heterogeneous effect of immune dysfunction on the brains of both male and female mice. However, by imaging the whole brain and using Bayesian hierarchical modelling, we were able to identify patterns within the heterogeneous phenotype. Certain structures—such as the corpus callosum, midbrain, and thalamus—were more likely to be affected by immune dysfunction. A notable brain–behaviour relationship was identified with neuroanatomy endophenotypes across mouse models clustering according to anxiety-like behaviour phenotypes reported in literature, such as altered volume in brains regions associated with promoting fear response (e.g., the lateral septum and cerebellum). Interestingly, genes with preferential spatial expression in the most commonly affected regions are also associated with multiple sclerosis and other immune-mediated diseases. In total, our data suggest that the immune system modulates anxiety behaviour through well-established brain networks.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35422470</pmid><doi>10.1038/s41380-022-01535-5</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0625-7515</orcidid><orcidid>https://orcid.org/0000-0002-8579-4705</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1359-4184 |
ispartof | Molecular psychiatry, 2022-07, Vol.27 (7), p.3047-3055 |
issn | 1359-4184 1476-5578 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9205773 |
source | SpringerNature Journals |
subjects | 59/57 631/208 631/378 64/60 Anatomy Animal models Anxiety Bayesian analysis Behavioral Sciences Biological Psychology Brain Brain architecture Cerebellum Corpus callosum Immune system Magnetic resonance imaging Mathematical models Medicine Medicine & Public Health Mesencephalon Multiple sclerosis Neuroimaging Neurosciences Pharmacotherapy Phenotypes Psychiatry Septum Thalamus |
title | Mouse models of immune dysfunction: their neuroanatomical differences reflect their anxiety-behavioural phenotype |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T18%3A24%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mouse%20models%20of%20immune%20dysfunction:%20their%20neuroanatomical%20differences%20reflect%20their%20anxiety-behavioural%20phenotype&rft.jtitle=Molecular%20psychiatry&rft.au=Fernandes,%20Darren%20J.&rft.date=2022-07-01&rft.volume=27&rft.issue=7&rft.spage=3047&rft.epage=3055&rft.pages=3047-3055&rft.issn=1359-4184&rft.eissn=1476-5578&rft_id=info:doi/10.1038/s41380-022-01535-5&rft_dat=%3Cproquest_pubme%3E2677954939%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677954939&rft_id=info:pmid/35422470&rfr_iscdi=true |