Data-Driven Phenotyping of Central Disorders of Hypersomnolence With Unsupervised Clustering

Recent studies fueled doubts as to whether all currently defined central disorders of hypersomnolence are stable entities, especially narcolepsy type 2 and idiopathic hypersomnia. New reliable biomarkers are needed, and the question arises of whether current diagnostic criteria of hypersomnolence di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurology 2022-06, Vol.98 (23), p.e2387-e2400
Hauptverfasser: Gool, Jari K., Zhang, Zhongxing, Oei, Martijn S.S.L., Mathias, Stephanie, Dauvilliers, Yves, Mayer, Geert, Plazzi, Giuseppe, del Rio-Villegas, Rafael, Cano, Joan Santamaria, Šonka, Karel, Partinen, Markku, Overeem, Sebastiaan, Peraita-Adrados, Rosa, Heinzer, Raphael, Martins da Silva, Antonio, Högl, Birgit, Wierzbicka, Aleksandra, Heidbreder, Anna, Feketeova, Eva, Manconi, Mauro, Bušková, Jitka, Canellas, Francesca, Bassetti, Claudio L., Barateau, Lucie, Pizza, Fabio, Schmidt, Markus H., Fronczek, Rolf, Khatami, Ramin, Lammers, Gert Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2400
container_issue 23
container_start_page e2387
container_title Neurology
container_volume 98
creator Gool, Jari K.
Zhang, Zhongxing
Oei, Martijn S.S.L.
Mathias, Stephanie
Dauvilliers, Yves
Mayer, Geert
Plazzi, Giuseppe
del Rio-Villegas, Rafael
Cano, Joan Santamaria
Šonka, Karel
Partinen, Markku
Overeem, Sebastiaan
Peraita-Adrados, Rosa
Heinzer, Raphael
Martins da Silva, Antonio
Högl, Birgit
Wierzbicka, Aleksandra
Heidbreder, Anna
Feketeova, Eva
Manconi, Mauro
Bušková, Jitka
Canellas, Francesca
Bassetti, Claudio L.
Barateau, Lucie
Pizza, Fabio
Schmidt, Markus H.
Fronczek, Rolf
Khatami, Ramin
Lammers, Gert Jan
description Recent studies fueled doubts as to whether all currently defined central disorders of hypersomnolence are stable entities, especially narcolepsy type 2 and idiopathic hypersomnia. New reliable biomarkers are needed, and the question arises of whether current diagnostic criteria of hypersomnolence disorders should be reassessed. The main aim of this data-driven observational study was to see whether data-driven algorithms would segregate narcolepsy type 1 and identify more reliable subgrouping of individuals without cataplexy with new clinical biomarkers. We used agglomerative hierarchical clustering, an unsupervised machine learning algorithm, to identify distinct hypersomnolence clusters in the large-scale European Narcolepsy Network database. We included 97 variables, covering all aspects of central hypersomnolence disorders such as symptoms, demographics, objective and subjective sleep measures, and laboratory biomarkers. We specifically focused on subgrouping of patients without cataplexy. The number of clusters was chosen to be the minimal number for which patients without cataplexy were put in distinct groups. We included 1,078 unmedicated adolescents and adults. Seven clusters were identified, of which 4 clusters included predominantly individuals with cataplexy. The 2 most distinct clusters consisted of 158 and 157 patients, were dominated by those without cataplexy, and among other variables, significantly differed in presence of sleep drunkenness, subjective difficulty awakening, and weekend-week sleep length difference. Patients formally diagnosed as having narcolepsy type 2 and idiopathic hypersomnia were evenly mixed in these 2 clusters. Using a data-driven approach in the largest study on central disorders of hypersomnolence to date, our study identified distinct patient subgroups within the central disorders of hypersomnolence population. Our results contest inclusion of sleep-onset REM periods in diagnostic criteria for people without cataplexy and provide promising new variables for reliable diagnostic categories that better resemble different patient phenotypes. Cluster-guided classification will result in a more solid hypersomnolence classification system that is less vulnerable to instability of single features.
doi_str_mv 10.1212/WNL.0000000000200519
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9202524</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2652583179</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4875-8359364cc706d6f7f45df0e8a381e70491e4270324425dd371c5c516496006b83</originalsourceid><addsrcrecordid>eNpdkU1vEzEQhi0EomnhHyC0RzhsGX97L0hVAgQpAg5U5YBkubuzXcNmHezdVPn3dUgJUF9svTPzeGZeQl5QOKeMsjdXn1bncDwMQNLqEZlRyVSpOPv2mMyybEputDkhpyn9AMhBXT0lJ1wKrpniM_J94UZXLqLf4lB86XAI427jh5sitMUchzG6vlj4FGKDMe3F5W6TX2E9hB6HGosrP3bF5ZCmLG99wqaY91MaMWbIM_KkdX3C5_f3Gbl8_-7rfFmuPn_4OL9YlbUwWpaGy4orUdcaVKNa3QrZtIDGcUNRg6goCqaBMyGYbBquaS1rSZWoFIC6NvyMvD1wN9P1Gpv60LfdRL92cWeD8_b_yOA7exO2tmLAJBMZ8PoA6B6ULS9Wdq-ByJvLjWxpzn11_1kMvyZMo137VGPfuwHDlCxTkknDqa5yqjik1jGkFLE9sinYvYk2m2gfmpjLXv47zrHoj2t_ubehz5tOP_vpFqPt0PVj95unKBVlHo6BAg0l7K3nd91Xpuw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2652583179</pqid></control><display><type>article</type><title>Data-Driven Phenotyping of Central Disorders of Hypersomnolence With Unsupervised Clustering</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><source>Journals@Ovid Complete</source><creator>Gool, Jari K. ; Zhang, Zhongxing ; Oei, Martijn S.S.L. ; Mathias, Stephanie ; Dauvilliers, Yves ; Mayer, Geert ; Plazzi, Giuseppe ; del Rio-Villegas, Rafael ; Cano, Joan Santamaria ; Šonka, Karel ; Partinen, Markku ; Overeem, Sebastiaan ; Peraita-Adrados, Rosa ; Heinzer, Raphael ; Martins da Silva, Antonio ; Högl, Birgit ; Wierzbicka, Aleksandra ; Heidbreder, Anna ; Feketeova, Eva ; Manconi, Mauro ; Bušková, Jitka ; Canellas, Francesca ; Bassetti, Claudio L. ; Barateau, Lucie ; Pizza, Fabio ; Schmidt, Markus H. ; Fronczek, Rolf ; Khatami, Ramin ; Lammers, Gert Jan</creator><creatorcontrib>Gool, Jari K. ; Zhang, Zhongxing ; Oei, Martijn S.S.L. ; Mathias, Stephanie ; Dauvilliers, Yves ; Mayer, Geert ; Plazzi, Giuseppe ; del Rio-Villegas, Rafael ; Cano, Joan Santamaria ; Šonka, Karel ; Partinen, Markku ; Overeem, Sebastiaan ; Peraita-Adrados, Rosa ; Heinzer, Raphael ; Martins da Silva, Antonio ; Högl, Birgit ; Wierzbicka, Aleksandra ; Heidbreder, Anna ; Feketeova, Eva ; Manconi, Mauro ; Bušková, Jitka ; Canellas, Francesca ; Bassetti, Claudio L. ; Barateau, Lucie ; Pizza, Fabio ; Schmidt, Markus H. ; Fronczek, Rolf ; Khatami, Ramin ; Lammers, Gert Jan</creatorcontrib><description>Recent studies fueled doubts as to whether all currently defined central disorders of hypersomnolence are stable entities, especially narcolepsy type 2 and idiopathic hypersomnia. New reliable biomarkers are needed, and the question arises of whether current diagnostic criteria of hypersomnolence disorders should be reassessed. The main aim of this data-driven observational study was to see whether data-driven algorithms would segregate narcolepsy type 1 and identify more reliable subgrouping of individuals without cataplexy with new clinical biomarkers. We used agglomerative hierarchical clustering, an unsupervised machine learning algorithm, to identify distinct hypersomnolence clusters in the large-scale European Narcolepsy Network database. We included 97 variables, covering all aspects of central hypersomnolence disorders such as symptoms, demographics, objective and subjective sleep measures, and laboratory biomarkers. We specifically focused on subgrouping of patients without cataplexy. The number of clusters was chosen to be the minimal number for which patients without cataplexy were put in distinct groups. We included 1,078 unmedicated adolescents and adults. Seven clusters were identified, of which 4 clusters included predominantly individuals with cataplexy. The 2 most distinct clusters consisted of 158 and 157 patients, were dominated by those without cataplexy, and among other variables, significantly differed in presence of sleep drunkenness, subjective difficulty awakening, and weekend-week sleep length difference. Patients formally diagnosed as having narcolepsy type 2 and idiopathic hypersomnia were evenly mixed in these 2 clusters. Using a data-driven approach in the largest study on central disorders of hypersomnolence to date, our study identified distinct patient subgroups within the central disorders of hypersomnolence population. Our results contest inclusion of sleep-onset REM periods in diagnostic criteria for people without cataplexy and provide promising new variables for reliable diagnostic categories that better resemble different patient phenotypes. Cluster-guided classification will result in a more solid hypersomnolence classification system that is less vulnerable to instability of single features.</description><identifier>ISSN: 0028-3878</identifier><identifier>EISSN: 1526-632X</identifier><identifier>DOI: 10.1212/WNL.0000000000200519</identifier><identifier>PMID: 35437263</identifier><language>eng</language><publisher>United States: Lippincott Williams &amp; Wilkins</publisher><subject>Adolescent ; Cataplexy ; Cataplexy - diagnosis ; Cluster Analysis ; Cognitive science ; Disorders of Excessive Somnolence ; Disorders of Excessive Somnolence - diagnosis ; Disorders of Excessive Somnolence - epidemiology ; Humans ; Idiopathic Hypersomnia ; Idiopathic Hypersomnia - diagnosis ; Narcolepsy ; Narcolepsy - diagnosis ; Narcolepsy - drug therapy ; Neuroscience</subject><ispartof>Neurology, 2022-06, Vol.98 (23), p.e2387-e2400</ispartof><rights>Lippincott Williams &amp; Wilkins</rights><rights>Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.</rights><rights>Attribution</rights><rights>Copyright © 2022 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology. 2022 American Academy of Neurology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4875-8359364cc706d6f7f45df0e8a381e70491e4270324425dd371c5c516496006b83</citedby><cites>FETCH-LOGICAL-c4875-8359364cc706d6f7f45df0e8a381e70491e4270324425dd371c5c516496006b83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,776,780,881,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35437263$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-04527491$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Gool, Jari K.</creatorcontrib><creatorcontrib>Zhang, Zhongxing</creatorcontrib><creatorcontrib>Oei, Martijn S.S.L.</creatorcontrib><creatorcontrib>Mathias, Stephanie</creatorcontrib><creatorcontrib>Dauvilliers, Yves</creatorcontrib><creatorcontrib>Mayer, Geert</creatorcontrib><creatorcontrib>Plazzi, Giuseppe</creatorcontrib><creatorcontrib>del Rio-Villegas, Rafael</creatorcontrib><creatorcontrib>Cano, Joan Santamaria</creatorcontrib><creatorcontrib>Šonka, Karel</creatorcontrib><creatorcontrib>Partinen, Markku</creatorcontrib><creatorcontrib>Overeem, Sebastiaan</creatorcontrib><creatorcontrib>Peraita-Adrados, Rosa</creatorcontrib><creatorcontrib>Heinzer, Raphael</creatorcontrib><creatorcontrib>Martins da Silva, Antonio</creatorcontrib><creatorcontrib>Högl, Birgit</creatorcontrib><creatorcontrib>Wierzbicka, Aleksandra</creatorcontrib><creatorcontrib>Heidbreder, Anna</creatorcontrib><creatorcontrib>Feketeova, Eva</creatorcontrib><creatorcontrib>Manconi, Mauro</creatorcontrib><creatorcontrib>Bušková, Jitka</creatorcontrib><creatorcontrib>Canellas, Francesca</creatorcontrib><creatorcontrib>Bassetti, Claudio L.</creatorcontrib><creatorcontrib>Barateau, Lucie</creatorcontrib><creatorcontrib>Pizza, Fabio</creatorcontrib><creatorcontrib>Schmidt, Markus H.</creatorcontrib><creatorcontrib>Fronczek, Rolf</creatorcontrib><creatorcontrib>Khatami, Ramin</creatorcontrib><creatorcontrib>Lammers, Gert Jan</creatorcontrib><title>Data-Driven Phenotyping of Central Disorders of Hypersomnolence With Unsupervised Clustering</title><title>Neurology</title><addtitle>Neurology</addtitle><description>Recent studies fueled doubts as to whether all currently defined central disorders of hypersomnolence are stable entities, especially narcolepsy type 2 and idiopathic hypersomnia. New reliable biomarkers are needed, and the question arises of whether current diagnostic criteria of hypersomnolence disorders should be reassessed. The main aim of this data-driven observational study was to see whether data-driven algorithms would segregate narcolepsy type 1 and identify more reliable subgrouping of individuals without cataplexy with new clinical biomarkers. We used agglomerative hierarchical clustering, an unsupervised machine learning algorithm, to identify distinct hypersomnolence clusters in the large-scale European Narcolepsy Network database. We included 97 variables, covering all aspects of central hypersomnolence disorders such as symptoms, demographics, objective and subjective sleep measures, and laboratory biomarkers. We specifically focused on subgrouping of patients without cataplexy. The number of clusters was chosen to be the minimal number for which patients without cataplexy were put in distinct groups. We included 1,078 unmedicated adolescents and adults. Seven clusters were identified, of which 4 clusters included predominantly individuals with cataplexy. The 2 most distinct clusters consisted of 158 and 157 patients, were dominated by those without cataplexy, and among other variables, significantly differed in presence of sleep drunkenness, subjective difficulty awakening, and weekend-week sleep length difference. Patients formally diagnosed as having narcolepsy type 2 and idiopathic hypersomnia were evenly mixed in these 2 clusters. Using a data-driven approach in the largest study on central disorders of hypersomnolence to date, our study identified distinct patient subgroups within the central disorders of hypersomnolence population. Our results contest inclusion of sleep-onset REM periods in diagnostic criteria for people without cataplexy and provide promising new variables for reliable diagnostic categories that better resemble different patient phenotypes. Cluster-guided classification will result in a more solid hypersomnolence classification system that is less vulnerable to instability of single features.</description><subject>Adolescent</subject><subject>Cataplexy</subject><subject>Cataplexy - diagnosis</subject><subject>Cluster Analysis</subject><subject>Cognitive science</subject><subject>Disorders of Excessive Somnolence</subject><subject>Disorders of Excessive Somnolence - diagnosis</subject><subject>Disorders of Excessive Somnolence - epidemiology</subject><subject>Humans</subject><subject>Idiopathic Hypersomnia</subject><subject>Idiopathic Hypersomnia - diagnosis</subject><subject>Narcolepsy</subject><subject>Narcolepsy - diagnosis</subject><subject>Narcolepsy - drug therapy</subject><subject>Neuroscience</subject><issn>0028-3878</issn><issn>1526-632X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkU1vEzEQhi0EomnhHyC0RzhsGX97L0hVAgQpAg5U5YBkubuzXcNmHezdVPn3dUgJUF9svTPzeGZeQl5QOKeMsjdXn1bncDwMQNLqEZlRyVSpOPv2mMyybEputDkhpyn9AMhBXT0lJ1wKrpniM_J94UZXLqLf4lB86XAI427jh5sitMUchzG6vlj4FGKDMe3F5W6TX2E9hB6HGosrP3bF5ZCmLG99wqaY91MaMWbIM_KkdX3C5_f3Gbl8_-7rfFmuPn_4OL9YlbUwWpaGy4orUdcaVKNa3QrZtIDGcUNRg6goCqaBMyGYbBquaS1rSZWoFIC6NvyMvD1wN9P1Gpv60LfdRL92cWeD8_b_yOA7exO2tmLAJBMZ8PoA6B6ULS9Wdq-ByJvLjWxpzn11_1kMvyZMo137VGPfuwHDlCxTkknDqa5yqjik1jGkFLE9sinYvYk2m2gfmpjLXv47zrHoj2t_ubehz5tOP_vpFqPt0PVj95unKBVlHo6BAg0l7K3nd91Xpuw</recordid><startdate>20220607</startdate><enddate>20220607</enddate><creator>Gool, Jari K.</creator><creator>Zhang, Zhongxing</creator><creator>Oei, Martijn S.S.L.</creator><creator>Mathias, Stephanie</creator><creator>Dauvilliers, Yves</creator><creator>Mayer, Geert</creator><creator>Plazzi, Giuseppe</creator><creator>del Rio-Villegas, Rafael</creator><creator>Cano, Joan Santamaria</creator><creator>Šonka, Karel</creator><creator>Partinen, Markku</creator><creator>Overeem, Sebastiaan</creator><creator>Peraita-Adrados, Rosa</creator><creator>Heinzer, Raphael</creator><creator>Martins da Silva, Antonio</creator><creator>Högl, Birgit</creator><creator>Wierzbicka, Aleksandra</creator><creator>Heidbreder, Anna</creator><creator>Feketeova, Eva</creator><creator>Manconi, Mauro</creator><creator>Bušková, Jitka</creator><creator>Canellas, Francesca</creator><creator>Bassetti, Claudio L.</creator><creator>Barateau, Lucie</creator><creator>Pizza, Fabio</creator><creator>Schmidt, Markus H.</creator><creator>Fronczek, Rolf</creator><creator>Khatami, Ramin</creator><creator>Lammers, Gert Jan</creator><general>Lippincott Williams &amp; Wilkins</general><general>American Academy of Neurology</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20220607</creationdate><title>Data-Driven Phenotyping of Central Disorders of Hypersomnolence With Unsupervised Clustering</title><author>Gool, Jari K. ; Zhang, Zhongxing ; Oei, Martijn S.S.L. ; Mathias, Stephanie ; Dauvilliers, Yves ; Mayer, Geert ; Plazzi, Giuseppe ; del Rio-Villegas, Rafael ; Cano, Joan Santamaria ; Šonka, Karel ; Partinen, Markku ; Overeem, Sebastiaan ; Peraita-Adrados, Rosa ; Heinzer, Raphael ; Martins da Silva, Antonio ; Högl, Birgit ; Wierzbicka, Aleksandra ; Heidbreder, Anna ; Feketeova, Eva ; Manconi, Mauro ; Bušková, Jitka ; Canellas, Francesca ; Bassetti, Claudio L. ; Barateau, Lucie ; Pizza, Fabio ; Schmidt, Markus H. ; Fronczek, Rolf ; Khatami, Ramin ; Lammers, Gert Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4875-8359364cc706d6f7f45df0e8a381e70491e4270324425dd371c5c516496006b83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adolescent</topic><topic>Cataplexy</topic><topic>Cataplexy - diagnosis</topic><topic>Cluster Analysis</topic><topic>Cognitive science</topic><topic>Disorders of Excessive Somnolence</topic><topic>Disorders of Excessive Somnolence - diagnosis</topic><topic>Disorders of Excessive Somnolence - epidemiology</topic><topic>Humans</topic><topic>Idiopathic Hypersomnia</topic><topic>Idiopathic Hypersomnia - diagnosis</topic><topic>Narcolepsy</topic><topic>Narcolepsy - diagnosis</topic><topic>Narcolepsy - drug therapy</topic><topic>Neuroscience</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gool, Jari K.</creatorcontrib><creatorcontrib>Zhang, Zhongxing</creatorcontrib><creatorcontrib>Oei, Martijn S.S.L.</creatorcontrib><creatorcontrib>Mathias, Stephanie</creatorcontrib><creatorcontrib>Dauvilliers, Yves</creatorcontrib><creatorcontrib>Mayer, Geert</creatorcontrib><creatorcontrib>Plazzi, Giuseppe</creatorcontrib><creatorcontrib>del Rio-Villegas, Rafael</creatorcontrib><creatorcontrib>Cano, Joan Santamaria</creatorcontrib><creatorcontrib>Šonka, Karel</creatorcontrib><creatorcontrib>Partinen, Markku</creatorcontrib><creatorcontrib>Overeem, Sebastiaan</creatorcontrib><creatorcontrib>Peraita-Adrados, Rosa</creatorcontrib><creatorcontrib>Heinzer, Raphael</creatorcontrib><creatorcontrib>Martins da Silva, Antonio</creatorcontrib><creatorcontrib>Högl, Birgit</creatorcontrib><creatorcontrib>Wierzbicka, Aleksandra</creatorcontrib><creatorcontrib>Heidbreder, Anna</creatorcontrib><creatorcontrib>Feketeova, Eva</creatorcontrib><creatorcontrib>Manconi, Mauro</creatorcontrib><creatorcontrib>Bušková, Jitka</creatorcontrib><creatorcontrib>Canellas, Francesca</creatorcontrib><creatorcontrib>Bassetti, Claudio L.</creatorcontrib><creatorcontrib>Barateau, Lucie</creatorcontrib><creatorcontrib>Pizza, Fabio</creatorcontrib><creatorcontrib>Schmidt, Markus H.</creatorcontrib><creatorcontrib>Fronczek, Rolf</creatorcontrib><creatorcontrib>Khatami, Ramin</creatorcontrib><creatorcontrib>Lammers, Gert Jan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neurology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gool, Jari K.</au><au>Zhang, Zhongxing</au><au>Oei, Martijn S.S.L.</au><au>Mathias, Stephanie</au><au>Dauvilliers, Yves</au><au>Mayer, Geert</au><au>Plazzi, Giuseppe</au><au>del Rio-Villegas, Rafael</au><au>Cano, Joan Santamaria</au><au>Šonka, Karel</au><au>Partinen, Markku</au><au>Overeem, Sebastiaan</au><au>Peraita-Adrados, Rosa</au><au>Heinzer, Raphael</au><au>Martins da Silva, Antonio</au><au>Högl, Birgit</au><au>Wierzbicka, Aleksandra</au><au>Heidbreder, Anna</au><au>Feketeova, Eva</au><au>Manconi, Mauro</au><au>Bušková, Jitka</au><au>Canellas, Francesca</au><au>Bassetti, Claudio L.</au><au>Barateau, Lucie</au><au>Pizza, Fabio</au><au>Schmidt, Markus H.</au><au>Fronczek, Rolf</au><au>Khatami, Ramin</au><au>Lammers, Gert Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Data-Driven Phenotyping of Central Disorders of Hypersomnolence With Unsupervised Clustering</atitle><jtitle>Neurology</jtitle><addtitle>Neurology</addtitle><date>2022-06-07</date><risdate>2022</risdate><volume>98</volume><issue>23</issue><spage>e2387</spage><epage>e2400</epage><pages>e2387-e2400</pages><issn>0028-3878</issn><eissn>1526-632X</eissn><abstract>Recent studies fueled doubts as to whether all currently defined central disorders of hypersomnolence are stable entities, especially narcolepsy type 2 and idiopathic hypersomnia. New reliable biomarkers are needed, and the question arises of whether current diagnostic criteria of hypersomnolence disorders should be reassessed. The main aim of this data-driven observational study was to see whether data-driven algorithms would segregate narcolepsy type 1 and identify more reliable subgrouping of individuals without cataplexy with new clinical biomarkers. We used agglomerative hierarchical clustering, an unsupervised machine learning algorithm, to identify distinct hypersomnolence clusters in the large-scale European Narcolepsy Network database. We included 97 variables, covering all aspects of central hypersomnolence disorders such as symptoms, demographics, objective and subjective sleep measures, and laboratory biomarkers. We specifically focused on subgrouping of patients without cataplexy. The number of clusters was chosen to be the minimal number for which patients without cataplexy were put in distinct groups. We included 1,078 unmedicated adolescents and adults. Seven clusters were identified, of which 4 clusters included predominantly individuals with cataplexy. The 2 most distinct clusters consisted of 158 and 157 patients, were dominated by those without cataplexy, and among other variables, significantly differed in presence of sleep drunkenness, subjective difficulty awakening, and weekend-week sleep length difference. Patients formally diagnosed as having narcolepsy type 2 and idiopathic hypersomnia were evenly mixed in these 2 clusters. Using a data-driven approach in the largest study on central disorders of hypersomnolence to date, our study identified distinct patient subgroups within the central disorders of hypersomnolence population. Our results contest inclusion of sleep-onset REM periods in diagnostic criteria for people without cataplexy and provide promising new variables for reliable diagnostic categories that better resemble different patient phenotypes. Cluster-guided classification will result in a more solid hypersomnolence classification system that is less vulnerable to instability of single features.</abstract><cop>United States</cop><pub>Lippincott Williams &amp; Wilkins</pub><pmid>35437263</pmid><doi>10.1212/WNL.0000000000200519</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-3878
ispartof Neurology, 2022-06, Vol.98 (23), p.e2387-e2400
issn 0028-3878
1526-632X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9202524
source MEDLINE; Alma/SFX Local Collection; Journals@Ovid Complete
subjects Adolescent
Cataplexy
Cataplexy - diagnosis
Cluster Analysis
Cognitive science
Disorders of Excessive Somnolence
Disorders of Excessive Somnolence - diagnosis
Disorders of Excessive Somnolence - epidemiology
Humans
Idiopathic Hypersomnia
Idiopathic Hypersomnia - diagnosis
Narcolepsy
Narcolepsy - diagnosis
Narcolepsy - drug therapy
Neuroscience
title Data-Driven Phenotyping of Central Disorders of Hypersomnolence With Unsupervised Clustering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T06%3A11%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Data-Driven%20Phenotyping%20of%20Central%20Disorders%20of%20Hypersomnolence%20With%20Unsupervised%20Clustering&rft.jtitle=Neurology&rft.au=Gool,%20Jari%20K.&rft.date=2022-06-07&rft.volume=98&rft.issue=23&rft.spage=e2387&rft.epage=e2400&rft.pages=e2387-e2400&rft.issn=0028-3878&rft.eissn=1526-632X&rft_id=info:doi/10.1212/WNL.0000000000200519&rft_dat=%3Cproquest_pubme%3E2652583179%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2652583179&rft_id=info:pmid/35437263&rfr_iscdi=true