Involvement of acyl coenzyme A oxidase isozymes in biotransformation of methyl ricinoleate into gamma-decalactone by Yarrowia lipolytica

We reported previously on the function of acyl coenzyme A (acyl-CoA) oxidase isozymes in the yeast Yarrowia lipolytica by investigating strains disrupted in one or several acyl-CoA oxidase-encoding genes (POX1 through POX5) (H. Wang et al., J. Bacteriol. 181:5140-5148, 1999). Here, these mutants wer...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and environmental microbiology 2000-03, Vol.66 (3), p.1233-1236
Hauptverfasser: Wache, Y, Laroche, C, Bergmark, K, Moller-Andersen, C, Aguedo, M, Le Dall, M.T, Wang, H, Nicaud, J.M, Belin, J.M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1236
container_issue 3
container_start_page 1233
container_title Applied and environmental microbiology
container_volume 66
creator Wache, Y
Laroche, C
Bergmark, K
Moller-Andersen, C
Aguedo, M
Le Dall, M.T
Wang, H
Nicaud, J.M
Belin, J.M
description We reported previously on the function of acyl coenzyme A (acyl-CoA) oxidase isozymes in the yeast Yarrowia lipolytica by investigating strains disrupted in one or several acyl-CoA oxidase-encoding genes (POX1 through POX5) (H. Wang et al., J. Bacteriol. 181:5140-5148, 1999). Here, these mutants were studied for lactone production. Monodisrupted strains produced similar levels of lactone as the wild-type strain (50 mg/liter) except for deltapox3, which produced 220 mg of gamma-decalactone per liter after 24 h. The deltapox2 deltapox3 double-disrupted strain, although slightly affected in growth, produced about 150 mg of lactone per liter, indicating that Aox2p was not essential for the biotransformation. The deltapox2 deltapox3 deltapox5 triple-disrupted strain produced and consumed lactone very slowly. On the contrary, the deltapox2 deltapox3 deltapox4 deltapox5 multidisrupted strain did not grow or biotransform methyl ricinoleate into gamma-decalactone, demonstrating that Aox4p is essential for the biotransformation.
doi_str_mv 10.1128/AEM.66.3.1233-1236.2000
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_91971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>51555378</sourcerecordid><originalsourceid>FETCH-LOGICAL-c600t-e3228ef4d751e6df0a2b28856db30d892676a10bd322d3a0573650290121fb273</originalsourceid><addsrcrecordid>eNpdktGO1CAUhhujcdfVV3CJMSZedDxASyHxZrJZ3U3GeKF74RWhlM6woTBCZ3R8Ah9bup3ouje0ge_jcOAvinMMC4wJf7e8_LRgbEEXmFBa5oEtCAA8Kk4xCF7WlLLHxSmAECUhFZwUz1K6zUAFjD8tTjAwwTnAafH72u-D25vB-BGFHil9cEgH438dBoOWKPy0nUoG2RSmmYSsR60NY1Q-9SEOarTBT-Jgxk1Wo9XWB2fUmB0_BrRWw6DKzmjllB6DN6g9oG8qxvDDKuTsNrjDaLV6XjzplUvmxfF7Vtx8uPx6cVWuPn-8vliuSs0AxtJQQrjpq66psWFdD4q0hPOadS2FjgvCGqYwtF3mOqqgbiirgQjABPctaehZ8X7ed7trB9Pp3HdUTm6jHVQ8yKCs_H_F241ch70UWDQ463TWnTVrI0NsrdyTO-3uf-fWUmnZGkkI4xIz0nCWrbeztXlQ6mq5ktMcAGU8v-J-qvDmeMAYvu9MGuVgkzbOKW_CLknc1FDltjL46gF4G3bR58uTBGpRsYqRDDUzpGNIKZr-b3kMcoqSzFGSjEkqpyhNA5NTlLL58v5F3fPm7GTg9RFQKb9unyOhbfrHEVFzMfV-PmO9ClKtY0ZuvhDAFCag4oL-Aa6y3Kk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205946462</pqid></control><display><type>article</type><title>Involvement of acyl coenzyme A oxidase isozymes in biotransformation of methyl ricinoleate into gamma-decalactone by Yarrowia lipolytica</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Wache, Y ; Laroche, C ; Bergmark, K ; Moller-Andersen, C ; Aguedo, M ; Le Dall, M.T ; Wang, H ; Nicaud, J.M ; Belin, J.M</creator><creatorcontrib>Wache, Y ; Laroche, C ; Bergmark, K ; Moller-Andersen, C ; Aguedo, M ; Le Dall, M.T ; Wang, H ; Nicaud, J.M ; Belin, J.M</creatorcontrib><description>We reported previously on the function of acyl coenzyme A (acyl-CoA) oxidase isozymes in the yeast Yarrowia lipolytica by investigating strains disrupted in one or several acyl-CoA oxidase-encoding genes (POX1 through POX5) (H. Wang et al., J. Bacteriol. 181:5140-5148, 1999). Here, these mutants were studied for lactone production. Monodisrupted strains produced similar levels of lactone as the wild-type strain (50 mg/liter) except for deltapox3, which produced 220 mg of gamma-decalactone per liter after 24 h. The deltapox2 deltapox3 double-disrupted strain, although slightly affected in growth, produced about 150 mg of lactone per liter, indicating that Aox2p was not essential for the biotransformation. The deltapox2 deltapox3 deltapox5 triple-disrupted strain produced and consumed lactone very slowly. On the contrary, the deltapox2 deltapox3 deltapox4 deltapox5 multidisrupted strain did not grow or biotransform methyl ricinoleate into gamma-decalactone, demonstrating that Aox4p is essential for the biotransformation.</description><identifier>ISSN: 0099-2240</identifier><identifier>ISSN: 1098-5336</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.66.3.1233-1236.2000</identifier><identifier>PMID: 10698800</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Acyl-CoA Oxidase ; Biochemistry ; Biochemistry, Molecular Biology ; Biological and medical sciences ; Biotechnologie ; Biotechnology ; Biotransformation ; Computer Science ; Enzymes ; Eukaryotes ; Fundamental and applied biological sciences. Psychology ; Genes ; Genetic technics ; Isoenzymes ; Isoenzymes - metabolism ; Lactone ; Lactones ; Lactones - metabolism ; Life Sciences ; Methods. Procedures. Technologies ; Methyl ricinoleate ; Microbiology ; Mutant screening ; odors ; Oxidoreductases ; Oxidoreductases - metabolism ; Physiology and Biotechnology ; Ricinoleic Acids ; Ricinoleic Acids - metabolism ; Saccharomycetales ; Saccharomycetales - metabolism ; Sciences du vivant ; Yarrowia lipolytica</subject><ispartof>Applied and environmental microbiology, 2000-03, Vol.66 (3), p.1233-1236</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Mar 2000</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>Copyright © 2000, American Society for Microbiology 2000</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c600t-e3228ef4d751e6df0a2b28856db30d892676a10bd322d3a0573650290121fb273</citedby><cites>FETCH-LOGICAL-c600t-e3228ef4d751e6df0a2b28856db30d892676a10bd322d3a0573650290121fb273</cites><orcidid>0000-0002-5337-3420</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC91971/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC91971/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,3174,27903,27904,53770,53772</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1295896$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10698800$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00368236$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Wache, Y</creatorcontrib><creatorcontrib>Laroche, C</creatorcontrib><creatorcontrib>Bergmark, K</creatorcontrib><creatorcontrib>Moller-Andersen, C</creatorcontrib><creatorcontrib>Aguedo, M</creatorcontrib><creatorcontrib>Le Dall, M.T</creatorcontrib><creatorcontrib>Wang, H</creatorcontrib><creatorcontrib>Nicaud, J.M</creatorcontrib><creatorcontrib>Belin, J.M</creatorcontrib><title>Involvement of acyl coenzyme A oxidase isozymes in biotransformation of methyl ricinoleate into gamma-decalactone by Yarrowia lipolytica</title><title>Applied and environmental microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>We reported previously on the function of acyl coenzyme A (acyl-CoA) oxidase isozymes in the yeast Yarrowia lipolytica by investigating strains disrupted in one or several acyl-CoA oxidase-encoding genes (POX1 through POX5) (H. Wang et al., J. Bacteriol. 181:5140-5148, 1999). Here, these mutants were studied for lactone production. Monodisrupted strains produced similar levels of lactone as the wild-type strain (50 mg/liter) except for deltapox3, which produced 220 mg of gamma-decalactone per liter after 24 h. The deltapox2 deltapox3 double-disrupted strain, although slightly affected in growth, produced about 150 mg of lactone per liter, indicating that Aox2p was not essential for the biotransformation. The deltapox2 deltapox3 deltapox5 triple-disrupted strain produced and consumed lactone very slowly. On the contrary, the deltapox2 deltapox3 deltapox4 deltapox5 multidisrupted strain did not grow or biotransform methyl ricinoleate into gamma-decalactone, demonstrating that Aox4p is essential for the biotransformation.</description><subject>Acyl-CoA Oxidase</subject><subject>Biochemistry</subject><subject>Biochemistry, Molecular Biology</subject><subject>Biological and medical sciences</subject><subject>Biotechnologie</subject><subject>Biotechnology</subject><subject>Biotransformation</subject><subject>Computer Science</subject><subject>Enzymes</subject><subject>Eukaryotes</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes</subject><subject>Genetic technics</subject><subject>Isoenzymes</subject><subject>Isoenzymes - metabolism</subject><subject>Lactone</subject><subject>Lactones</subject><subject>Lactones - metabolism</subject><subject>Life Sciences</subject><subject>Methods. Procedures. Technologies</subject><subject>Methyl ricinoleate</subject><subject>Microbiology</subject><subject>Mutant screening</subject><subject>odors</subject><subject>Oxidoreductases</subject><subject>Oxidoreductases - metabolism</subject><subject>Physiology and Biotechnology</subject><subject>Ricinoleic Acids</subject><subject>Ricinoleic Acids - metabolism</subject><subject>Saccharomycetales</subject><subject>Saccharomycetales - metabolism</subject><subject>Sciences du vivant</subject><subject>Yarrowia lipolytica</subject><issn>0099-2240</issn><issn>1098-5336</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdktGO1CAUhhujcdfVV3CJMSZedDxASyHxZrJZ3U3GeKF74RWhlM6woTBCZ3R8Ah9bup3ouje0ge_jcOAvinMMC4wJf7e8_LRgbEEXmFBa5oEtCAA8Kk4xCF7WlLLHxSmAECUhFZwUz1K6zUAFjD8tTjAwwTnAafH72u-D25vB-BGFHil9cEgH438dBoOWKPy0nUoG2RSmmYSsR60NY1Q-9SEOarTBT-Jgxk1Wo9XWB2fUmB0_BrRWw6DKzmjllB6DN6g9oG8qxvDDKuTsNrjDaLV6XjzplUvmxfF7Vtx8uPx6cVWuPn-8vliuSs0AxtJQQrjpq66psWFdD4q0hPOadS2FjgvCGqYwtF3mOqqgbiirgQjABPctaehZ8X7ed7trB9Pp3HdUTm6jHVQ8yKCs_H_F241ch70UWDQ463TWnTVrI0NsrdyTO-3uf-fWUmnZGkkI4xIz0nCWrbeztXlQ6mq5ktMcAGU8v-J-qvDmeMAYvu9MGuVgkzbOKW_CLknc1FDltjL46gF4G3bR58uTBGpRsYqRDDUzpGNIKZr-b3kMcoqSzFGSjEkqpyhNA5NTlLL58v5F3fPm7GTg9RFQKb9unyOhbfrHEVFzMfV-PmO9ClKtY0ZuvhDAFCag4oL-Aa6y3Kk</recordid><startdate>20000301</startdate><enddate>20000301</enddate><creator>Wache, Y</creator><creator>Laroche, C</creator><creator>Bergmark, K</creator><creator>Moller-Andersen, C</creator><creator>Aguedo, M</creator><creator>Le Dall, M.T</creator><creator>Wang, H</creator><creator>Nicaud, J.M</creator><creator>Belin, J.M</creator><general>American Society for Microbiology</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>1XC</scope><scope>Q33</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-5337-3420</orcidid></search><sort><creationdate>20000301</creationdate><title>Involvement of acyl coenzyme A oxidase isozymes in biotransformation of methyl ricinoleate into gamma-decalactone by Yarrowia lipolytica</title><author>Wache, Y ; Laroche, C ; Bergmark, K ; Moller-Andersen, C ; Aguedo, M ; Le Dall, M.T ; Wang, H ; Nicaud, J.M ; Belin, J.M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c600t-e3228ef4d751e6df0a2b28856db30d892676a10bd322d3a0573650290121fb273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Acyl-CoA Oxidase</topic><topic>Biochemistry</topic><topic>Biochemistry, Molecular Biology</topic><topic>Biological and medical sciences</topic><topic>Biotechnologie</topic><topic>Biotechnology</topic><topic>Biotransformation</topic><topic>Computer Science</topic><topic>Enzymes</topic><topic>Eukaryotes</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes</topic><topic>Genetic technics</topic><topic>Isoenzymes</topic><topic>Isoenzymes - metabolism</topic><topic>Lactone</topic><topic>Lactones</topic><topic>Lactones - metabolism</topic><topic>Life Sciences</topic><topic>Methods. Procedures. Technologies</topic><topic>Methyl ricinoleate</topic><topic>Microbiology</topic><topic>Mutant screening</topic><topic>odors</topic><topic>Oxidoreductases</topic><topic>Oxidoreductases - metabolism</topic><topic>Physiology and Biotechnology</topic><topic>Ricinoleic Acids</topic><topic>Ricinoleic Acids - metabolism</topic><topic>Saccharomycetales</topic><topic>Saccharomycetales - metabolism</topic><topic>Sciences du vivant</topic><topic>Yarrowia lipolytica</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wache, Y</creatorcontrib><creatorcontrib>Laroche, C</creatorcontrib><creatorcontrib>Bergmark, K</creatorcontrib><creatorcontrib>Moller-Andersen, C</creatorcontrib><creatorcontrib>Aguedo, M</creatorcontrib><creatorcontrib>Le Dall, M.T</creatorcontrib><creatorcontrib>Wang, H</creatorcontrib><creatorcontrib>Nicaud, J.M</creatorcontrib><creatorcontrib>Belin, J.M</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Université de Liège - Open Repository and Bibliography (ORBI)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and environmental microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wache, Y</au><au>Laroche, C</au><au>Bergmark, K</au><au>Moller-Andersen, C</au><au>Aguedo, M</au><au>Le Dall, M.T</au><au>Wang, H</au><au>Nicaud, J.M</au><au>Belin, J.M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Involvement of acyl coenzyme A oxidase isozymes in biotransformation of methyl ricinoleate into gamma-decalactone by Yarrowia lipolytica</atitle><jtitle>Applied and environmental microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2000-03-01</date><risdate>2000</risdate><volume>66</volume><issue>3</issue><spage>1233</spage><epage>1236</epage><pages>1233-1236</pages><issn>0099-2240</issn><issn>1098-5336</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>We reported previously on the function of acyl coenzyme A (acyl-CoA) oxidase isozymes in the yeast Yarrowia lipolytica by investigating strains disrupted in one or several acyl-CoA oxidase-encoding genes (POX1 through POX5) (H. Wang et al., J. Bacteriol. 181:5140-5148, 1999). Here, these mutants were studied for lactone production. Monodisrupted strains produced similar levels of lactone as the wild-type strain (50 mg/liter) except for deltapox3, which produced 220 mg of gamma-decalactone per liter after 24 h. The deltapox2 deltapox3 double-disrupted strain, although slightly affected in growth, produced about 150 mg of lactone per liter, indicating that Aox2p was not essential for the biotransformation. The deltapox2 deltapox3 deltapox5 triple-disrupted strain produced and consumed lactone very slowly. On the contrary, the deltapox2 deltapox3 deltapox4 deltapox5 multidisrupted strain did not grow or biotransform methyl ricinoleate into gamma-decalactone, demonstrating that Aox4p is essential for the biotransformation.</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>10698800</pmid><doi>10.1128/AEM.66.3.1233-1236.2000</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-5337-3420</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and environmental microbiology, 2000-03, Vol.66 (3), p.1233-1236
issn 0099-2240
1098-5336
1098-5336
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_91971
source American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Acyl-CoA Oxidase
Biochemistry
Biochemistry, Molecular Biology
Biological and medical sciences
Biotechnologie
Biotechnology
Biotransformation
Computer Science
Enzymes
Eukaryotes
Fundamental and applied biological sciences. Psychology
Genes
Genetic technics
Isoenzymes
Isoenzymes - metabolism
Lactone
Lactones
Lactones - metabolism
Life Sciences
Methods. Procedures. Technologies
Methyl ricinoleate
Microbiology
Mutant screening
odors
Oxidoreductases
Oxidoreductases - metabolism
Physiology and Biotechnology
Ricinoleic Acids
Ricinoleic Acids - metabolism
Saccharomycetales
Saccharomycetales - metabolism
Sciences du vivant
Yarrowia lipolytica
title Involvement of acyl coenzyme A oxidase isozymes in biotransformation of methyl ricinoleate into gamma-decalactone by Yarrowia lipolytica
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A39%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Involvement%20of%20acyl%20coenzyme%20A%20oxidase%20isozymes%20in%20biotransformation%20of%20methyl%20ricinoleate%20into%20gamma-decalactone%20by%20Yarrowia%20lipolytica&rft.jtitle=Applied%20and%20environmental%20microbiology&rft.au=Wache,%20Y&rft.date=2000-03-01&rft.volume=66&rft.issue=3&rft.spage=1233&rft.epage=1236&rft.pages=1233-1236&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.66.3.1233-1236.2000&rft_dat=%3Cproquest_pubme%3E51555378%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205946462&rft_id=info:pmid/10698800&rfr_iscdi=true