Host succinate inhibits influenza virus infection through succinylation and nuclear retention of the viral nucleoprotein
Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2022-06, Vol.41 (12), p.e108306-n/a |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 12 |
container_start_page | e108306 |
container_title | The EMBO journal |
container_volume | 41 |
creator | Guillon, Antoine Brea‐Diakite, Deborah Cezard, Adeline Wacquiez, Alan Baranek, Thomas Bourgeais, Jérôme Picou, Frédéric Vasseur, Virginie Meyer, Léa Chevalier, Christophe Auvet, Adrien Carballido, José M Nadal Desbarats, Lydie Dingli, Florent Turtoi, Andrei Le Gouellec, Audrey Fauvelle, Florence Donchet, Amélie Crépin, Thibaut Hiemstra, Pieter S Paget, Christophe Loew, Damarys Herault, Olivier Naffakh, Nadia Le Goffic, Ronan Si‐Tahar, Mustapha |
description | Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here demonstrate that influenza virus induces a major reprogramming of lung metabolism. We focused on mitochondria‐derived succinate that accumulated both in the respiratory fluids of virus‐challenged mice and of patients with influenza pneumonia. Notably, succinate displays a potent antiviral activity
in vitro
as it inhibits the multiplication of influenza A/H1N1 and A/H3N2 strains and strongly decreases virus‐triggered metabolic perturbations and inflammatory responses. Moreover, mice receiving succinate intranasally showed reduced viral loads in lungs and increased survival compared to control animals. The antiviral mechanism involves a succinate‐dependent posttranslational modification, that is, succinylation, of the viral nucleoprotein at the highly conserved K87 residue. Succinylation of viral nucleoprotein altered its electrostatic interactions with viral RNA and further impaired the trafficking of viral ribonucleoprotein complexes. The finding that succinate efficiently disrupts the influenza replication cycle opens up new avenues for improved treatment of influenza pneumonia.
Synopsis
Metabolic defense mechanisms of lung epithelial cells exposed to influenza virus infection remain poorly understood. Here, combined metabolomics,
in vitro
and
in vivo
infection assays reveal a surprising anti‐viral role of energy production metabolite succinate in the airways, suggesting new avenues for improved treatment of influenza pneumonia.
Influenza A virus (IAV) infection of mice increases succinate levels in the airways.
IAV‐infected patients show elevated succinate levels in tracheal aspirates.
Succinate inhibits IAV infection through succinylation and nuclear retention of the viral nucleoprotein.
Succinate restores metabolic dysregulation in IAV‐infected lung epithelial cells and impairs acute influenza pneumonia
in vivo
.
Graphical Abstract
The energy‐production metabolite succinate protects from pulmonary viral infection via post‐translational modification‐dependent interruption of the influenza replication cycle. |
doi_str_mv | 10.15252/embj.2021108306 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9194747</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2675856941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5536-91f8b94455f086298cefd517b24895f995be68d34e79163e2f53073ed5375bb33</originalsourceid><addsrcrecordid>eNqFks1v0zAYxi0EYt3gzglF4sIOGf5OLKFJYxoUVMQFzpaTvGlcpXaxk0L563GbsrFJiJPt17_n8WP7RegFwRdEUEHfwLpaXVBMCcElw_IRmhEucU5xIR6jGaaS5JyU6gSdxrjCGIuyIE_RCRMCSyb5DP2c-zhkcaxr68wAmXWdrewQ06TtR3C_TLa1YTysoR6sd9nQBT8uu6No15tD1bgmc2PdgwlZgAHcoerbhMPewvTTtt8EP4B1z9CT1vQRnh_HM_Tt_c3X63m--PLh4_XVIq-FYDJXpC0rxbkQLS4lVWUNbSNIUVFeKtEqJSqQZcM4FIpIBrQVDBcMGsEKUVWMnaHLyXczVmto6hQsZdGbYNcm7LQ3Vt_fcbbTS7_Viihe8CIZnE8G3QPZ_Gqh9zXMZHpVyrc0sa-PhwX_fYQ46LWNNfS9ceDHqKkUSmKmuEzoqwfoyo_BpadIVCFKIRUnicITVQcfY4D2NgHB-tACet8C-q4FkuTl3xe-Ffz58wS8nYAftofdfw31zed3n-75k0kek9ItIdwF_2em32aU0Bo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2675856941</pqid></control><display><type>article</type><title>Host succinate inhibits influenza virus infection through succinylation and nuclear retention of the viral nucleoprotein</title><source>Wiley Free Content</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature OA Free Journals</source><creator>Guillon, Antoine ; Brea‐Diakite, Deborah ; Cezard, Adeline ; Wacquiez, Alan ; Baranek, Thomas ; Bourgeais, Jérôme ; Picou, Frédéric ; Vasseur, Virginie ; Meyer, Léa ; Chevalier, Christophe ; Auvet, Adrien ; Carballido, José M ; Nadal Desbarats, Lydie ; Dingli, Florent ; Turtoi, Andrei ; Le Gouellec, Audrey ; Fauvelle, Florence ; Donchet, Amélie ; Crépin, Thibaut ; Hiemstra, Pieter S ; Paget, Christophe ; Loew, Damarys ; Herault, Olivier ; Naffakh, Nadia ; Le Goffic, Ronan ; Si‐Tahar, Mustapha</creator><creatorcontrib>Guillon, Antoine ; Brea‐Diakite, Deborah ; Cezard, Adeline ; Wacquiez, Alan ; Baranek, Thomas ; Bourgeais, Jérôme ; Picou, Frédéric ; Vasseur, Virginie ; Meyer, Léa ; Chevalier, Christophe ; Auvet, Adrien ; Carballido, José M ; Nadal Desbarats, Lydie ; Dingli, Florent ; Turtoi, Andrei ; Le Gouellec, Audrey ; Fauvelle, Florence ; Donchet, Amélie ; Crépin, Thibaut ; Hiemstra, Pieter S ; Paget, Christophe ; Loew, Damarys ; Herault, Olivier ; Naffakh, Nadia ; Le Goffic, Ronan ; Si‐Tahar, Mustapha</creatorcontrib><description>Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here demonstrate that influenza virus induces a major reprogramming of lung metabolism. We focused on mitochondria‐derived succinate that accumulated both in the respiratory fluids of virus‐challenged mice and of patients with influenza pneumonia. Notably, succinate displays a potent antiviral activity
in vitro
as it inhibits the multiplication of influenza A/H1N1 and A/H3N2 strains and strongly decreases virus‐triggered metabolic perturbations and inflammatory responses. Moreover, mice receiving succinate intranasally showed reduced viral loads in lungs and increased survival compared to control animals. The antiviral mechanism involves a succinate‐dependent posttranslational modification, that is, succinylation, of the viral nucleoprotein at the highly conserved K87 residue. Succinylation of viral nucleoprotein altered its electrostatic interactions with viral RNA and further impaired the trafficking of viral ribonucleoprotein complexes. The finding that succinate efficiently disrupts the influenza replication cycle opens up new avenues for improved treatment of influenza pneumonia.
Synopsis
Metabolic defense mechanisms of lung epithelial cells exposed to influenza virus infection remain poorly understood. Here, combined metabolomics,
in vitro
and
in vivo
infection assays reveal a surprising anti‐viral role of energy production metabolite succinate in the airways, suggesting new avenues for improved treatment of influenza pneumonia.
Influenza A virus (IAV) infection of mice increases succinate levels in the airways.
IAV‐infected patients show elevated succinate levels in tracheal aspirates.
Succinate inhibits IAV infection through succinylation and nuclear retention of the viral nucleoprotein.
Succinate restores metabolic dysregulation in IAV‐infected lung epithelial cells and impairs acute influenza pneumonia
in vivo
.
Graphical Abstract
The energy‐production metabolite succinate protects from pulmonary viral infection via post‐translational modification‐dependent interruption of the influenza replication cycle.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.15252/embj.2021108306</identifier><identifier>PMID: 35506364</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>antiviral ; Antiviral activity ; Bronchus ; Electrostatic properties ; EMBO19 ; EMBO21 ; EMBO23 ; Epithelial cells ; Epithelium ; Human health and pathology ; Infections ; Inflammation ; Influenza ; Influenza A ; Lavage ; Life Sciences ; Lungs ; metabokine ; Metabolism ; Metabolites ; Metabolomics ; Mitochondria ; Morbidity ; Multiplication ; Patients ; Perturbation ; Pneumonia ; Retention ; signaling ; virus ; Viruses</subject><ispartof>The EMBO journal, 2022-06, Vol.41 (12), p.e108306-n/a</ispartof><rights>The Author(s) 2022</rights><rights>2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license</rights><rights>2022 The Authors. Published under the terms of the CC BY NC ND 4.0 license.</rights><rights>2022. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution - NonCommercial - NoDerivatives</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5536-91f8b94455f086298cefd517b24895f995be68d34e79163e2f53073ed5375bb33</citedby><cites>FETCH-LOGICAL-c5536-91f8b94455f086298cefd517b24895f995be68d34e79163e2f53073ed5375bb33</cites><orcidid>0000-0001-8608-701X ; 0000-0002-4905-3854 ; 0000-0002-0238-5982 ; 0000-0002-2066-2146 ; 0000-0002-0424-0277 ; 0000-0002-2012-0064 ; 0000-0002-5792-7742 ; 0000-0001-5266-5328 ; 0000-0003-2663-1794 ; 0000-0002-9111-8842 ; 0000-0002-7715-2446 ; 0000-0002-5651-0937 ; 0000-0003-3813-6635 ; 0000-0001-8465-0665 ; 0000-0003-3231-9027 ; 0000-0002-5374-5407 ; 0000-0001-8770-6951 ; 0000-0002-7000-6964 ; 0000-0002-4884-8620 ; 0000-0002-7419-1124</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9194747/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9194747/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35506364$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://univ-tours.hal.science/hal-03687124$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Guillon, Antoine</creatorcontrib><creatorcontrib>Brea‐Diakite, Deborah</creatorcontrib><creatorcontrib>Cezard, Adeline</creatorcontrib><creatorcontrib>Wacquiez, Alan</creatorcontrib><creatorcontrib>Baranek, Thomas</creatorcontrib><creatorcontrib>Bourgeais, Jérôme</creatorcontrib><creatorcontrib>Picou, Frédéric</creatorcontrib><creatorcontrib>Vasseur, Virginie</creatorcontrib><creatorcontrib>Meyer, Léa</creatorcontrib><creatorcontrib>Chevalier, Christophe</creatorcontrib><creatorcontrib>Auvet, Adrien</creatorcontrib><creatorcontrib>Carballido, José M</creatorcontrib><creatorcontrib>Nadal Desbarats, Lydie</creatorcontrib><creatorcontrib>Dingli, Florent</creatorcontrib><creatorcontrib>Turtoi, Andrei</creatorcontrib><creatorcontrib>Le Gouellec, Audrey</creatorcontrib><creatorcontrib>Fauvelle, Florence</creatorcontrib><creatorcontrib>Donchet, Amélie</creatorcontrib><creatorcontrib>Crépin, Thibaut</creatorcontrib><creatorcontrib>Hiemstra, Pieter S</creatorcontrib><creatorcontrib>Paget, Christophe</creatorcontrib><creatorcontrib>Loew, Damarys</creatorcontrib><creatorcontrib>Herault, Olivier</creatorcontrib><creatorcontrib>Naffakh, Nadia</creatorcontrib><creatorcontrib>Le Goffic, Ronan</creatorcontrib><creatorcontrib>Si‐Tahar, Mustapha</creatorcontrib><title>Host succinate inhibits influenza virus infection through succinylation and nuclear retention of the viral nucleoprotein</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here demonstrate that influenza virus induces a major reprogramming of lung metabolism. We focused on mitochondria‐derived succinate that accumulated both in the respiratory fluids of virus‐challenged mice and of patients with influenza pneumonia. Notably, succinate displays a potent antiviral activity
in vitro
as it inhibits the multiplication of influenza A/H1N1 and A/H3N2 strains and strongly decreases virus‐triggered metabolic perturbations and inflammatory responses. Moreover, mice receiving succinate intranasally showed reduced viral loads in lungs and increased survival compared to control animals. The antiviral mechanism involves a succinate‐dependent posttranslational modification, that is, succinylation, of the viral nucleoprotein at the highly conserved K87 residue. Succinylation of viral nucleoprotein altered its electrostatic interactions with viral RNA and further impaired the trafficking of viral ribonucleoprotein complexes. The finding that succinate efficiently disrupts the influenza replication cycle opens up new avenues for improved treatment of influenza pneumonia.
Synopsis
Metabolic defense mechanisms of lung epithelial cells exposed to influenza virus infection remain poorly understood. Here, combined metabolomics,
in vitro
and
in vivo
infection assays reveal a surprising anti‐viral role of energy production metabolite succinate in the airways, suggesting new avenues for improved treatment of influenza pneumonia.
Influenza A virus (IAV) infection of mice increases succinate levels in the airways.
IAV‐infected patients show elevated succinate levels in tracheal aspirates.
Succinate inhibits IAV infection through succinylation and nuclear retention of the viral nucleoprotein.
Succinate restores metabolic dysregulation in IAV‐infected lung epithelial cells and impairs acute influenza pneumonia
in vivo
.
Graphical Abstract
The energy‐production metabolite succinate protects from pulmonary viral infection via post‐translational modification‐dependent interruption of the influenza replication cycle.</description><subject>antiviral</subject><subject>Antiviral activity</subject><subject>Bronchus</subject><subject>Electrostatic properties</subject><subject>EMBO19</subject><subject>EMBO21</subject><subject>EMBO23</subject><subject>Epithelial cells</subject><subject>Epithelium</subject><subject>Human health and pathology</subject><subject>Infections</subject><subject>Inflammation</subject><subject>Influenza</subject><subject>Influenza A</subject><subject>Lavage</subject><subject>Life Sciences</subject><subject>Lungs</subject><subject>metabokine</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolomics</subject><subject>Mitochondria</subject><subject>Morbidity</subject><subject>Multiplication</subject><subject>Patients</subject><subject>Perturbation</subject><subject>Pneumonia</subject><subject>Retention</subject><subject>signaling</subject><subject>virus</subject><subject>Viruses</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>24P</sourceid><recordid>eNqFks1v0zAYxi0EYt3gzglF4sIOGf5OLKFJYxoUVMQFzpaTvGlcpXaxk0L563GbsrFJiJPt17_n8WP7RegFwRdEUEHfwLpaXVBMCcElw_IRmhEucU5xIR6jGaaS5JyU6gSdxrjCGIuyIE_RCRMCSyb5DP2c-zhkcaxr68wAmXWdrewQ06TtR3C_TLa1YTysoR6sd9nQBT8uu6No15tD1bgmc2PdgwlZgAHcoerbhMPewvTTtt8EP4B1z9CT1vQRnh_HM_Tt_c3X63m--PLh4_XVIq-FYDJXpC0rxbkQLS4lVWUNbSNIUVFeKtEqJSqQZcM4FIpIBrQVDBcMGsEKUVWMnaHLyXczVmto6hQsZdGbYNcm7LQ3Vt_fcbbTS7_Viihe8CIZnE8G3QPZ_Gqh9zXMZHpVyrc0sa-PhwX_fYQ46LWNNfS9ceDHqKkUSmKmuEzoqwfoyo_BpadIVCFKIRUnicITVQcfY4D2NgHB-tACet8C-q4FkuTl3xe-Ffz58wS8nYAftofdfw31zed3n-75k0kek9ItIdwF_2em32aU0Bo</recordid><startdate>20220614</startdate><enddate>20220614</enddate><creator>Guillon, Antoine</creator><creator>Brea‐Diakite, Deborah</creator><creator>Cezard, Adeline</creator><creator>Wacquiez, Alan</creator><creator>Baranek, Thomas</creator><creator>Bourgeais, Jérôme</creator><creator>Picou, Frédéric</creator><creator>Vasseur, Virginie</creator><creator>Meyer, Léa</creator><creator>Chevalier, Christophe</creator><creator>Auvet, Adrien</creator><creator>Carballido, José M</creator><creator>Nadal Desbarats, Lydie</creator><creator>Dingli, Florent</creator><creator>Turtoi, Andrei</creator><creator>Le Gouellec, Audrey</creator><creator>Fauvelle, Florence</creator><creator>Donchet, Amélie</creator><creator>Crépin, Thibaut</creator><creator>Hiemstra, Pieter S</creator><creator>Paget, Christophe</creator><creator>Loew, Damarys</creator><creator>Herault, Olivier</creator><creator>Naffakh, Nadia</creator><creator>Le Goffic, Ronan</creator><creator>Si‐Tahar, Mustapha</creator><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>EMBO Press</general><general>John Wiley and Sons Inc</general><scope>C6C</scope><scope>24P</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-8608-701X</orcidid><orcidid>https://orcid.org/0000-0002-4905-3854</orcidid><orcidid>https://orcid.org/0000-0002-0238-5982</orcidid><orcidid>https://orcid.org/0000-0002-2066-2146</orcidid><orcidid>https://orcid.org/0000-0002-0424-0277</orcidid><orcidid>https://orcid.org/0000-0002-2012-0064</orcidid><orcidid>https://orcid.org/0000-0002-5792-7742</orcidid><orcidid>https://orcid.org/0000-0001-5266-5328</orcidid><orcidid>https://orcid.org/0000-0003-2663-1794</orcidid><orcidid>https://orcid.org/0000-0002-9111-8842</orcidid><orcidid>https://orcid.org/0000-0002-7715-2446</orcidid><orcidid>https://orcid.org/0000-0002-5651-0937</orcidid><orcidid>https://orcid.org/0000-0003-3813-6635</orcidid><orcidid>https://orcid.org/0000-0001-8465-0665</orcidid><orcidid>https://orcid.org/0000-0003-3231-9027</orcidid><orcidid>https://orcid.org/0000-0002-5374-5407</orcidid><orcidid>https://orcid.org/0000-0001-8770-6951</orcidid><orcidid>https://orcid.org/0000-0002-7000-6964</orcidid><orcidid>https://orcid.org/0000-0002-4884-8620</orcidid><orcidid>https://orcid.org/0000-0002-7419-1124</orcidid></search><sort><creationdate>20220614</creationdate><title>Host succinate inhibits influenza virus infection through succinylation and nuclear retention of the viral nucleoprotein</title><author>Guillon, Antoine ; Brea‐Diakite, Deborah ; Cezard, Adeline ; Wacquiez, Alan ; Baranek, Thomas ; Bourgeais, Jérôme ; Picou, Frédéric ; Vasseur, Virginie ; Meyer, Léa ; Chevalier, Christophe ; Auvet, Adrien ; Carballido, José M ; Nadal Desbarats, Lydie ; Dingli, Florent ; Turtoi, Andrei ; Le Gouellec, Audrey ; Fauvelle, Florence ; Donchet, Amélie ; Crépin, Thibaut ; Hiemstra, Pieter S ; Paget, Christophe ; Loew, Damarys ; Herault, Olivier ; Naffakh, Nadia ; Le Goffic, Ronan ; Si‐Tahar, Mustapha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5536-91f8b94455f086298cefd517b24895f995be68d34e79163e2f53073ed5375bb33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>antiviral</topic><topic>Antiviral activity</topic><topic>Bronchus</topic><topic>Electrostatic properties</topic><topic>EMBO19</topic><topic>EMBO21</topic><topic>EMBO23</topic><topic>Epithelial cells</topic><topic>Epithelium</topic><topic>Human health and pathology</topic><topic>Infections</topic><topic>Inflammation</topic><topic>Influenza</topic><topic>Influenza A</topic><topic>Lavage</topic><topic>Life Sciences</topic><topic>Lungs</topic><topic>metabokine</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolomics</topic><topic>Mitochondria</topic><topic>Morbidity</topic><topic>Multiplication</topic><topic>Patients</topic><topic>Perturbation</topic><topic>Pneumonia</topic><topic>Retention</topic><topic>signaling</topic><topic>virus</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guillon, Antoine</creatorcontrib><creatorcontrib>Brea‐Diakite, Deborah</creatorcontrib><creatorcontrib>Cezard, Adeline</creatorcontrib><creatorcontrib>Wacquiez, Alan</creatorcontrib><creatorcontrib>Baranek, Thomas</creatorcontrib><creatorcontrib>Bourgeais, Jérôme</creatorcontrib><creatorcontrib>Picou, Frédéric</creatorcontrib><creatorcontrib>Vasseur, Virginie</creatorcontrib><creatorcontrib>Meyer, Léa</creatorcontrib><creatorcontrib>Chevalier, Christophe</creatorcontrib><creatorcontrib>Auvet, Adrien</creatorcontrib><creatorcontrib>Carballido, José M</creatorcontrib><creatorcontrib>Nadal Desbarats, Lydie</creatorcontrib><creatorcontrib>Dingli, Florent</creatorcontrib><creatorcontrib>Turtoi, Andrei</creatorcontrib><creatorcontrib>Le Gouellec, Audrey</creatorcontrib><creatorcontrib>Fauvelle, Florence</creatorcontrib><creatorcontrib>Donchet, Amélie</creatorcontrib><creatorcontrib>Crépin, Thibaut</creatorcontrib><creatorcontrib>Hiemstra, Pieter S</creatorcontrib><creatorcontrib>Paget, Christophe</creatorcontrib><creatorcontrib>Loew, Damarys</creatorcontrib><creatorcontrib>Herault, Olivier</creatorcontrib><creatorcontrib>Naffakh, Nadia</creatorcontrib><creatorcontrib>Le Goffic, Ronan</creatorcontrib><creatorcontrib>Si‐Tahar, Mustapha</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Wiley Online Library Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guillon, Antoine</au><au>Brea‐Diakite, Deborah</au><au>Cezard, Adeline</au><au>Wacquiez, Alan</au><au>Baranek, Thomas</au><au>Bourgeais, Jérôme</au><au>Picou, Frédéric</au><au>Vasseur, Virginie</au><au>Meyer, Léa</au><au>Chevalier, Christophe</au><au>Auvet, Adrien</au><au>Carballido, José M</au><au>Nadal Desbarats, Lydie</au><au>Dingli, Florent</au><au>Turtoi, Andrei</au><au>Le Gouellec, Audrey</au><au>Fauvelle, Florence</au><au>Donchet, Amélie</au><au>Crépin, Thibaut</au><au>Hiemstra, Pieter S</au><au>Paget, Christophe</au><au>Loew, Damarys</au><au>Herault, Olivier</au><au>Naffakh, Nadia</au><au>Le Goffic, Ronan</au><au>Si‐Tahar, Mustapha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Host succinate inhibits influenza virus infection through succinylation and nuclear retention of the viral nucleoprotein</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2022-06-14</date><risdate>2022</risdate><volume>41</volume><issue>12</issue><spage>e108306</spage><epage>n/a</epage><pages>e108306-n/a</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><abstract>Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here demonstrate that influenza virus induces a major reprogramming of lung metabolism. We focused on mitochondria‐derived succinate that accumulated both in the respiratory fluids of virus‐challenged mice and of patients with influenza pneumonia. Notably, succinate displays a potent antiviral activity
in vitro
as it inhibits the multiplication of influenza A/H1N1 and A/H3N2 strains and strongly decreases virus‐triggered metabolic perturbations and inflammatory responses. Moreover, mice receiving succinate intranasally showed reduced viral loads in lungs and increased survival compared to control animals. The antiviral mechanism involves a succinate‐dependent posttranslational modification, that is, succinylation, of the viral nucleoprotein at the highly conserved K87 residue. Succinylation of viral nucleoprotein altered its electrostatic interactions with viral RNA and further impaired the trafficking of viral ribonucleoprotein complexes. The finding that succinate efficiently disrupts the influenza replication cycle opens up new avenues for improved treatment of influenza pneumonia.
Synopsis
Metabolic defense mechanisms of lung epithelial cells exposed to influenza virus infection remain poorly understood. Here, combined metabolomics,
in vitro
and
in vivo
infection assays reveal a surprising anti‐viral role of energy production metabolite succinate in the airways, suggesting new avenues for improved treatment of influenza pneumonia.
Influenza A virus (IAV) infection of mice increases succinate levels in the airways.
IAV‐infected patients show elevated succinate levels in tracheal aspirates.
Succinate inhibits IAV infection through succinylation and nuclear retention of the viral nucleoprotein.
Succinate restores metabolic dysregulation in IAV‐infected lung epithelial cells and impairs acute influenza pneumonia
in vivo
.
Graphical Abstract
The energy‐production metabolite succinate protects from pulmonary viral infection via post‐translational modification‐dependent interruption of the influenza replication cycle.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>35506364</pmid><doi>10.15252/embj.2021108306</doi><tpages>25</tpages><orcidid>https://orcid.org/0000-0001-8608-701X</orcidid><orcidid>https://orcid.org/0000-0002-4905-3854</orcidid><orcidid>https://orcid.org/0000-0002-0238-5982</orcidid><orcidid>https://orcid.org/0000-0002-2066-2146</orcidid><orcidid>https://orcid.org/0000-0002-0424-0277</orcidid><orcidid>https://orcid.org/0000-0002-2012-0064</orcidid><orcidid>https://orcid.org/0000-0002-5792-7742</orcidid><orcidid>https://orcid.org/0000-0001-5266-5328</orcidid><orcidid>https://orcid.org/0000-0003-2663-1794</orcidid><orcidid>https://orcid.org/0000-0002-9111-8842</orcidid><orcidid>https://orcid.org/0000-0002-7715-2446</orcidid><orcidid>https://orcid.org/0000-0002-5651-0937</orcidid><orcidid>https://orcid.org/0000-0003-3813-6635</orcidid><orcidid>https://orcid.org/0000-0001-8465-0665</orcidid><orcidid>https://orcid.org/0000-0003-3231-9027</orcidid><orcidid>https://orcid.org/0000-0002-5374-5407</orcidid><orcidid>https://orcid.org/0000-0001-8770-6951</orcidid><orcidid>https://orcid.org/0000-0002-7000-6964</orcidid><orcidid>https://orcid.org/0000-0002-4884-8620</orcidid><orcidid>https://orcid.org/0000-0002-7419-1124</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2022-06, Vol.41 (12), p.e108306-n/a |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9194747 |
source | Wiley Free Content; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature OA Free Journals |
subjects | antiviral Antiviral activity Bronchus Electrostatic properties EMBO19 EMBO21 EMBO23 Epithelial cells Epithelium Human health and pathology Infections Inflammation Influenza Influenza A Lavage Life Sciences Lungs metabokine Metabolism Metabolites Metabolomics Mitochondria Morbidity Multiplication Patients Perturbation Pneumonia Retention signaling virus Viruses |
title | Host succinate inhibits influenza virus infection through succinylation and nuclear retention of the viral nucleoprotein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T23%3A27%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Host%20succinate%20inhibits%20influenza%20virus%20infection%20through%20succinylation%20and%20nuclear%20retention%20of%20the%20viral%20nucleoprotein&rft.jtitle=The%20EMBO%20journal&rft.au=Guillon,%20Antoine&rft.date=2022-06-14&rft.volume=41&rft.issue=12&rft.spage=e108306&rft.epage=n/a&rft.pages=e108306-n/a&rft.issn=0261-4189&rft.eissn=1460-2075&rft_id=info:doi/10.15252/embj.2021108306&rft_dat=%3Cproquest_pubme%3E2675856941%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2675856941&rft_id=info:pmid/35506364&rfr_iscdi=true |