Estimating deer density and abundance using spatial mark–resight models with camera trap data

Globally, many wild deer populations are actively studied or managed for conservation, hunting, or damage mitigation purposes. These studies require reliable estimates of population state parameters, such as density or abundance, with a level of precision that is fit for purpose. Such estimates can...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mammalogy 2022-06, Vol.103 (3), p.711-722
Hauptverfasser: Bengsen, Andrew J., Forsyth, David M., Ramsey, Dave S. L., Amos, Matt, Brennan, Michael, Pople, Anthony R., Comte, Sebastien, Crittle, Troy
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 722
container_issue 3
container_start_page 711
container_title Journal of mammalogy
container_volume 103
creator Bengsen, Andrew J.
Forsyth, David M.
Ramsey, Dave S. L.
Amos, Matt
Brennan, Michael
Pople, Anthony R.
Comte, Sebastien
Crittle, Troy
description Globally, many wild deer populations are actively studied or managed for conservation, hunting, or damage mitigation purposes. These studies require reliable estimates of population state parameters, such as density or abundance, with a level of precision that is fit for purpose. Such estimates can be difficult to attain for many populations that occur in situations that are poorly suited to common survey methods. We evaluated the utility of combining camera trap survey data, in which a small proportion of the sample is individually recognizable using natural markings, with spatial mark–resight (SMR) models to estimate deer density in a variety of situations. We surveyed 13 deer populations comprising four deer species (Cervus unicolor, C. timorensis, C. elaphus, Dama dama) at nine widely separated sites, and used Bayesian SMR models to estimate population densities and abundances. Twelve surveys provided sufficient data for analysis and seven produced density estimates with coefficients of variation (CVs) ≤ 0.25. Estimated densities ranged from 0.3 to 24.6 deer km–2. Camera trap surveys and SMR models provided a powerful and flexible approach for estimating deer densities in populations in which many detections were not individually identifiable, and they should provide useful density estimates under a wide range of conditions that are not amenable to more widely used methods. In the absence of specific local information on deer detectability and movement patterns, we recommend that at least 30 cameras be spaced at 500–1,000 m and set for 90 days. This approach could also be applied to large mammals other than deer.
doi_str_mv 10.1093/jmammal/gyac016
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9189690</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jmammal/gyac016</oup_id><sourcerecordid>2677574824</sourcerecordid><originalsourceid>FETCH-LOGICAL-b466t-56baaf0c2492638c3ed8bf004c8170caf453c019b6d6f1ce76ff16e0fe3fb2363</originalsourceid><addsrcrecordid>eNqNkb-O1DAQxi0E4paDmg65REhh_SexkwYJnY4D6SQaqK2JY-_6iO1gO6DteAfekCc5n3Y5QQXNTDG_-eYbfQg9p-Q1JQPf3njwHubt7gCaUPEAbWjXdk0t7CHaEMJYw7hkZ-hJzjeEkE4y8hid8U4SKWS_QeoyF-ehuLDDkzGplpBdOWAIE4ZxDRMEbfCa74C8VBBm7CF9-fXjZzLZ7fYF-ziZOePvruyxBm8S4JJgwRMUeIoeWZizeXbq5-jzu8tPF--b649XHy7eXjdjK0RpOjECWKJZOzDBe83N1I-WkFb3VBINtu14fXAYxSQs1UYKa6kwxBpuR8YFP0dvjrrLOnozaROqhVktqT6XDiqCU39PgturXfymBtoPYiBV4OVJIMWvq8lFeZe1mWcIJq5ZMSFlJ9uetRXdHlGdYs7J2PszlKi7WNQpFnWKpW68-NPdPf87hwq8OgJxXf5DrTnCo4sxmH_ytxFcrgE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677574824</pqid></control><display><type>article</type><title>Estimating deer density and abundance using spatial mark–resight models with camera trap data</title><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Bengsen, Andrew J. ; Forsyth, David M. ; Ramsey, Dave S. L. ; Amos, Matt ; Brennan, Michael ; Pople, Anthony R. ; Comte, Sebastien ; Crittle, Troy</creator><contributor>Zollner, Patrick</contributor><creatorcontrib>Bengsen, Andrew J. ; Forsyth, David M. ; Ramsey, Dave S. L. ; Amos, Matt ; Brennan, Michael ; Pople, Anthony R. ; Comte, Sebastien ; Crittle, Troy ; Zollner, Patrick</creatorcontrib><description>Globally, many wild deer populations are actively studied or managed for conservation, hunting, or damage mitigation purposes. These studies require reliable estimates of population state parameters, such as density or abundance, with a level of precision that is fit for purpose. Such estimates can be difficult to attain for many populations that occur in situations that are poorly suited to common survey methods. We evaluated the utility of combining camera trap survey data, in which a small proportion of the sample is individually recognizable using natural markings, with spatial mark–resight (SMR) models to estimate deer density in a variety of situations. We surveyed 13 deer populations comprising four deer species (Cervus unicolor, C. timorensis, C. elaphus, Dama dama) at nine widely separated sites, and used Bayesian SMR models to estimate population densities and abundances. Twelve surveys provided sufficient data for analysis and seven produced density estimates with coefficients of variation (CVs) ≤ 0.25. Estimated densities ranged from 0.3 to 24.6 deer km–2. Camera trap surveys and SMR models provided a powerful and flexible approach for estimating deer densities in populations in which many detections were not individually identifiable, and they should provide useful density estimates under a wide range of conditions that are not amenable to more widely used methods. In the absence of specific local information on deer detectability and movement patterns, we recommend that at least 30 cameras be spaced at 500–1,000 m and set for 90 days. This approach could also be applied to large mammals other than deer.</description><identifier>ISSN: 0022-2372</identifier><identifier>EISSN: 1545-1542</identifier><identifier>DOI: 10.1093/jmammal/gyac016</identifier><identifier>PMID: 35707678</identifier><language>eng</language><publisher>US: American Society of Mammalogists</publisher><subject>abundance ; capture–recapture ; Cervidae ; detection rate ; fallow deer ; population estimation ; red deer ; rusa deer ; sambar deer</subject><ispartof>Journal of mammalogy, 2022-06, Vol.103 (3), p.711-722</ispartof><rights>The Author(s) 2022. Published by Oxford University Press on behalf of the American Society of Mammalogists. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of the American Society of Mammalogists. 2022</rights><rights>The Author(s) 2022. Published by Oxford University Press on behalf of the American Society of Mammalogists.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b466t-56baaf0c2492638c3ed8bf004c8170caf453c019b6d6f1ce76ff16e0fe3fb2363</citedby><cites>FETCH-LOGICAL-b466t-56baaf0c2492638c3ed8bf004c8170caf453c019b6d6f1ce76ff16e0fe3fb2363</cites><orcidid>0000-0001-7984-8159 ; 0000-0003-2205-4416</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,1579,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35707678$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zollner, Patrick</contributor><creatorcontrib>Bengsen, Andrew J.</creatorcontrib><creatorcontrib>Forsyth, David M.</creatorcontrib><creatorcontrib>Ramsey, Dave S. L.</creatorcontrib><creatorcontrib>Amos, Matt</creatorcontrib><creatorcontrib>Brennan, Michael</creatorcontrib><creatorcontrib>Pople, Anthony R.</creatorcontrib><creatorcontrib>Comte, Sebastien</creatorcontrib><creatorcontrib>Crittle, Troy</creatorcontrib><title>Estimating deer density and abundance using spatial mark–resight models with camera trap data</title><title>Journal of mammalogy</title><addtitle>J Mammal</addtitle><description>Globally, many wild deer populations are actively studied or managed for conservation, hunting, or damage mitigation purposes. These studies require reliable estimates of population state parameters, such as density or abundance, with a level of precision that is fit for purpose. Such estimates can be difficult to attain for many populations that occur in situations that are poorly suited to common survey methods. We evaluated the utility of combining camera trap survey data, in which a small proportion of the sample is individually recognizable using natural markings, with spatial mark–resight (SMR) models to estimate deer density in a variety of situations. We surveyed 13 deer populations comprising four deer species (Cervus unicolor, C. timorensis, C. elaphus, Dama dama) at nine widely separated sites, and used Bayesian SMR models to estimate population densities and abundances. Twelve surveys provided sufficient data for analysis and seven produced density estimates with coefficients of variation (CVs) ≤ 0.25. Estimated densities ranged from 0.3 to 24.6 deer km–2. Camera trap surveys and SMR models provided a powerful and flexible approach for estimating deer densities in populations in which many detections were not individually identifiable, and they should provide useful density estimates under a wide range of conditions that are not amenable to more widely used methods. In the absence of specific local information on deer detectability and movement patterns, we recommend that at least 30 cameras be spaced at 500–1,000 m and set for 90 days. This approach could also be applied to large mammals other than deer.</description><subject>abundance</subject><subject>capture–recapture</subject><subject>Cervidae</subject><subject>detection rate</subject><subject>fallow deer</subject><subject>population estimation</subject><subject>red deer</subject><subject>rusa deer</subject><subject>sambar deer</subject><issn>0022-2372</issn><issn>1545-1542</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><recordid>eNqNkb-O1DAQxi0E4paDmg65REhh_SexkwYJnY4D6SQaqK2JY-_6iO1gO6DteAfekCc5n3Y5QQXNTDG_-eYbfQg9p-Q1JQPf3njwHubt7gCaUPEAbWjXdk0t7CHaEMJYw7hkZ-hJzjeEkE4y8hid8U4SKWS_QeoyF-ehuLDDkzGplpBdOWAIE4ZxDRMEbfCa74C8VBBm7CF9-fXjZzLZ7fYF-ziZOePvruyxBm8S4JJgwRMUeIoeWZizeXbq5-jzu8tPF--b649XHy7eXjdjK0RpOjECWKJZOzDBe83N1I-WkFb3VBINtu14fXAYxSQs1UYKa6kwxBpuR8YFP0dvjrrLOnozaROqhVktqT6XDiqCU39PgturXfymBtoPYiBV4OVJIMWvq8lFeZe1mWcIJq5ZMSFlJ9uetRXdHlGdYs7J2PszlKi7WNQpFnWKpW68-NPdPf87hwq8OgJxXf5DrTnCo4sxmH_ytxFcrgE</recordid><startdate>20220601</startdate><enddate>20220601</enddate><creator>Bengsen, Andrew J.</creator><creator>Forsyth, David M.</creator><creator>Ramsey, Dave S. L.</creator><creator>Amos, Matt</creator><creator>Brennan, Michael</creator><creator>Pople, Anthony R.</creator><creator>Comte, Sebastien</creator><creator>Crittle, Troy</creator><general>American Society of Mammalogists</general><general>Oxford University Press</general><scope>TOX</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0001-7984-8159</orcidid><orcidid>https://orcid.org/0000-0003-2205-4416</orcidid></search><sort><creationdate>20220601</creationdate><title>Estimating deer density and abundance using spatial mark–resight models with camera trap data</title><author>Bengsen, Andrew J. ; Forsyth, David M. ; Ramsey, Dave S. L. ; Amos, Matt ; Brennan, Michael ; Pople, Anthony R. ; Comte, Sebastien ; Crittle, Troy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b466t-56baaf0c2492638c3ed8bf004c8170caf453c019b6d6f1ce76ff16e0fe3fb2363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>abundance</topic><topic>capture–recapture</topic><topic>Cervidae</topic><topic>detection rate</topic><topic>fallow deer</topic><topic>population estimation</topic><topic>red deer</topic><topic>rusa deer</topic><topic>sambar deer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bengsen, Andrew J.</creatorcontrib><creatorcontrib>Forsyth, David M.</creatorcontrib><creatorcontrib>Ramsey, Dave S. L.</creatorcontrib><creatorcontrib>Amos, Matt</creatorcontrib><creatorcontrib>Brennan, Michael</creatorcontrib><creatorcontrib>Pople, Anthony R.</creatorcontrib><creatorcontrib>Comte, Sebastien</creatorcontrib><creatorcontrib>Crittle, Troy</creatorcontrib><collection>Oxford Journals Open Access Collection</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of mammalogy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bengsen, Andrew J.</au><au>Forsyth, David M.</au><au>Ramsey, Dave S. L.</au><au>Amos, Matt</au><au>Brennan, Michael</au><au>Pople, Anthony R.</au><au>Comte, Sebastien</au><au>Crittle, Troy</au><au>Zollner, Patrick</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimating deer density and abundance using spatial mark–resight models with camera trap data</atitle><jtitle>Journal of mammalogy</jtitle><addtitle>J Mammal</addtitle><date>2022-06-01</date><risdate>2022</risdate><volume>103</volume><issue>3</issue><spage>711</spage><epage>722</epage><pages>711-722</pages><issn>0022-2372</issn><eissn>1545-1542</eissn><abstract>Globally, many wild deer populations are actively studied or managed for conservation, hunting, or damage mitigation purposes. These studies require reliable estimates of population state parameters, such as density or abundance, with a level of precision that is fit for purpose. Such estimates can be difficult to attain for many populations that occur in situations that are poorly suited to common survey methods. We evaluated the utility of combining camera trap survey data, in which a small proportion of the sample is individually recognizable using natural markings, with spatial mark–resight (SMR) models to estimate deer density in a variety of situations. We surveyed 13 deer populations comprising four deer species (Cervus unicolor, C. timorensis, C. elaphus, Dama dama) at nine widely separated sites, and used Bayesian SMR models to estimate population densities and abundances. Twelve surveys provided sufficient data for analysis and seven produced density estimates with coefficients of variation (CVs) ≤ 0.25. Estimated densities ranged from 0.3 to 24.6 deer km–2. Camera trap surveys and SMR models provided a powerful and flexible approach for estimating deer densities in populations in which many detections were not individually identifiable, and they should provide useful density estimates under a wide range of conditions that are not amenable to more widely used methods. In the absence of specific local information on deer detectability and movement patterns, we recommend that at least 30 cameras be spaced at 500–1,000 m and set for 90 days. This approach could also be applied to large mammals other than deer.</abstract><cop>US</cop><pub>American Society of Mammalogists</pub><pmid>35707678</pmid><doi>10.1093/jmammal/gyac016</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7984-8159</orcidid><orcidid>https://orcid.org/0000-0003-2205-4416</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2372
ispartof Journal of mammalogy, 2022-06, Vol.103 (3), p.711-722
issn 0022-2372
1545-1542
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9189690
source Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
subjects abundance
capture–recapture
Cervidae
detection rate
fallow deer
population estimation
red deer
rusa deer
sambar deer
title Estimating deer density and abundance using spatial mark–resight models with camera trap data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A41%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimating%20deer%20density%20and%20abundance%20using%20spatial%20mark%E2%80%93resight%20models%20with%20camera%20trap%20data&rft.jtitle=Journal%20of%20mammalogy&rft.au=Bengsen,%20Andrew%20J.&rft.date=2022-06-01&rft.volume=103&rft.issue=3&rft.spage=711&rft.epage=722&rft.pages=711-722&rft.issn=0022-2372&rft.eissn=1545-1542&rft_id=info:doi/10.1093/jmammal/gyac016&rft_dat=%3Cproquest_pubme%3E2677574824%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2677574824&rft_id=info:pmid/35707678&rft_oup_id=10.1093/jmammal/gyac016&rfr_iscdi=true