Integrated analysis of the faecal metagenome and serum metabolome reveals the role of gut microbiome-associated metabolites in the detection of colorectal cancer and adenoma

ObjectiveTo profile gut microbiome-associated metabolites in serum and investigate whether these metabolites could distinguish individuals with colorectal cancer (CRC) or adenoma from normal healthy individuals.DesignIntegrated analysis of untargeted serum metabolomics by liquid chromatography-mass...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gut 2022-07, Vol.71 (7), p.1315-1325
Hauptverfasser: Chen, Feng, Dai, Xudong, Zhou, Chang-Chun, Li, Ke-xin, Zhang, Yu-juan, Lou, Xiao-Ying, Zhu, Yuan-Min, Sun, Yan-Lai, Peng, Bao-Xiang, Cui, Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1325
container_issue 7
container_start_page 1315
container_title Gut
container_volume 71
creator Chen, Feng
Dai, Xudong
Zhou, Chang-Chun
Li, Ke-xin
Zhang, Yu-juan
Lou, Xiao-Ying
Zhu, Yuan-Min
Sun, Yan-Lai
Peng, Bao-Xiang
Cui, Wei
description ObjectiveTo profile gut microbiome-associated metabolites in serum and investigate whether these metabolites could distinguish individuals with colorectal cancer (CRC) or adenoma from normal healthy individuals.DesignIntegrated analysis of untargeted serum metabolomics by liquid chromatography-mass spectrometry and metagenome sequencing of paired faecal samples was applied to identify gut microbiome-associated metabolites with significantly altered abundance in patients with CRC and adenoma. The ability of these metabolites to discriminate between CRC and colorectal adenoma was tested by targeted metabolomic analysis. A model based on gut microbiome-associated metabolites was established and evaluated in an independent validation cohort.ResultsIn total, 885 serum metabolites were significantly altered in both CRC and adenoma, including eight gut microbiome-associated serum metabolites (GMSM panel) that were reproducibly detected by both targeted and untargeted metabolomics analysis and accurately discriminated CRC and adenoma from normal samples. A GMSM panel-based model to predict CRC and colorectal adenoma yielded an area under the curve (AUC) of 0.98 (95% CI 0.94 to 1.00) in the modelling cohort and an AUC of 0.92 (83.5% sensitivity, 84.9% specificity) in the validation cohort. The GMSM model was significantly superior to the clinical marker carcinoembryonic antigen among samples within the validation cohort (AUC 0.92 vs 0.72) and also showed promising diagnostic accuracy for adenomas (AUC=0.84) and early-stage CRC (AUC=0.93).ConclusionGut microbiome reprogramming in patients with CRC is associated with alterations of the serum metabolome, and GMSMs have potential applications for CRC and adenoma detection.
doi_str_mv 10.1136/gutjnl-2020-323476
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9185821</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2674859283</sourcerecordid><originalsourceid>FETCH-LOGICAL-b507t-38be1fe763c1d10ab9a5d33c512750d108beb19dccd2b137ff3e1a61ea607ac43</originalsourceid><addsrcrecordid>eNqNkstu1TAQhiMEoofCC7BAkdiwSfElsZ0NEqq4VKrEBtbWxJmc-iixi-1U6kP1HXGSw-GyQKysmfn-f8b2FMVLSi4o5eLtfk4HN1aMMFJxxmspHhU7WguVI6UeFztCqKwaWbdnxbMYD4QQpVr6tDjjdS0Y52JXPFy5hPsACfsSHIz30cbSD2W6wXIANDCWEybYo_MTZqIvI4Z5WpOdH5dkwDuEMa6S4Edc5Hm0crIm-M5mpIIYvbFrk6PQJoyldauox4QmWe8WpcmmIYe5sQFnMKxNoV8GgOfFkyG3whfH87z49vHD18vP1fWXT1eX76-rriEyVVx1SAeUghvaUwJdC03PuWkokw3JmVzvaNsb07OOcjkMHCkIiiCIBFPz8-Ld5ns7dxP2Bl0KMOrbYCcI99qD1X9WnL3Re3-nW6oaxWg2eHM0CP77jDHpyUaD4wgO_Rw1a4RslZScZPT1X-jBzyF_RaaErFXTMsUzxTYqv2mMAYfTMJToZRv0tg162Qa9bUMWvfr9GifJz-_PQLUB3XT4P8OLX_xpzH8IfgAwzNRt</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2674859283</pqid></control><display><type>article</type><title>Integrated analysis of the faecal metagenome and serum metabolome reveals the role of gut microbiome-associated metabolites in the detection of colorectal cancer and adenoma</title><source>MEDLINE</source><source>PubMed Central</source><creator>Chen, Feng ; Dai, Xudong ; Zhou, Chang-Chun ; Li, Ke-xin ; Zhang, Yu-juan ; Lou, Xiao-Ying ; Zhu, Yuan-Min ; Sun, Yan-Lai ; Peng, Bao-Xiang ; Cui, Wei</creator><creatorcontrib>Chen, Feng ; Dai, Xudong ; Zhou, Chang-Chun ; Li, Ke-xin ; Zhang, Yu-juan ; Lou, Xiao-Ying ; Zhu, Yuan-Min ; Sun, Yan-Lai ; Peng, Bao-Xiang ; Cui, Wei</creatorcontrib><description>ObjectiveTo profile gut microbiome-associated metabolites in serum and investigate whether these metabolites could distinguish individuals with colorectal cancer (CRC) or adenoma from normal healthy individuals.DesignIntegrated analysis of untargeted serum metabolomics by liquid chromatography-mass spectrometry and metagenome sequencing of paired faecal samples was applied to identify gut microbiome-associated metabolites with significantly altered abundance in patients with CRC and adenoma. The ability of these metabolites to discriminate between CRC and colorectal adenoma was tested by targeted metabolomic analysis. A model based on gut microbiome-associated metabolites was established and evaluated in an independent validation cohort.ResultsIn total, 885 serum metabolites were significantly altered in both CRC and adenoma, including eight gut microbiome-associated serum metabolites (GMSM panel) that were reproducibly detected by both targeted and untargeted metabolomics analysis and accurately discriminated CRC and adenoma from normal samples. A GMSM panel-based model to predict CRC and colorectal adenoma yielded an area under the curve (AUC) of 0.98 (95% CI 0.94 to 1.00) in the modelling cohort and an AUC of 0.92 (83.5% sensitivity, 84.9% specificity) in the validation cohort. The GMSM model was significantly superior to the clinical marker carcinoembryonic antigen among samples within the validation cohort (AUC 0.92 vs 0.72) and also showed promising diagnostic accuracy for adenomas (AUC=0.84) and early-stage CRC (AUC=0.93).ConclusionGut microbiome reprogramming in patients with CRC is associated with alterations of the serum metabolome, and GMSMs have potential applications for CRC and adenoma detection.</description><identifier>ISSN: 0017-5749</identifier><identifier>EISSN: 1468-3288</identifier><identifier>DOI: 10.1136/gutjnl-2020-323476</identifier><identifier>PMID: 34462336</identifier><language>eng</language><publisher>England: BMJ Publishing Group Ltd and British Society of Gastroenterology</publisher><subject>Adenoma ; Adenoma - diagnosis ; Antigens ; Bacteria ; Biomarkers ; Biomarkers, Tumor ; Carcinoembryonic antigen ; Chromatography ; colorectal adenomas ; Colorectal cancer ; Colorectal carcinoma ; Colorectal Neoplasms - genetics ; Digestive system ; Feces ; Gastrointestinal Microbiome - genetics ; Gut Microbiota ; Humans ; Intestinal microflora ; Laboratories ; Liquid chromatography ; Mass spectrometry ; Mass spectroscopy ; Metabolism ; Metabolites ; Metabolome ; Metabolomics ; Metagenome ; Methods ; Microbiomes ; Microbiota ; Patients ; Population ; Quality control ; Scientific imaging ; Statistical analysis ; Tumors</subject><ispartof>Gut, 2022-07, Vol.71 (7), p.1315-1325</ispartof><rights>Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</rights><rights>Author(s) (or their employer(s)) 2021. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ.</rights><rights>2022 Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. http://creativecommons.org/licenses/by-nc/4.0/ This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited, appropriate credit is given, any changes made indicated, and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/ . Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY-NC. No commercial re-use. See rights and permissions. Published by BMJ. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-b507t-38be1fe763c1d10ab9a5d33c512750d108beb19dccd2b137ff3e1a61ea607ac43</citedby><cites>FETCH-LOGICAL-b507t-38be1fe763c1d10ab9a5d33c512750d108beb19dccd2b137ff3e1a61ea607ac43</cites><orcidid>0000-0002-0947-5091 ; 0000-0003-2034-6351</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185821/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC9185821/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34462336$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Dai, Xudong</creatorcontrib><creatorcontrib>Zhou, Chang-Chun</creatorcontrib><creatorcontrib>Li, Ke-xin</creatorcontrib><creatorcontrib>Zhang, Yu-juan</creatorcontrib><creatorcontrib>Lou, Xiao-Ying</creatorcontrib><creatorcontrib>Zhu, Yuan-Min</creatorcontrib><creatorcontrib>Sun, Yan-Lai</creatorcontrib><creatorcontrib>Peng, Bao-Xiang</creatorcontrib><creatorcontrib>Cui, Wei</creatorcontrib><title>Integrated analysis of the faecal metagenome and serum metabolome reveals the role of gut microbiome-associated metabolites in the detection of colorectal cancer and adenoma</title><title>Gut</title><addtitle>Gut</addtitle><addtitle>Gut</addtitle><description>ObjectiveTo profile gut microbiome-associated metabolites in serum and investigate whether these metabolites could distinguish individuals with colorectal cancer (CRC) or adenoma from normal healthy individuals.DesignIntegrated analysis of untargeted serum metabolomics by liquid chromatography-mass spectrometry and metagenome sequencing of paired faecal samples was applied to identify gut microbiome-associated metabolites with significantly altered abundance in patients with CRC and adenoma. The ability of these metabolites to discriminate between CRC and colorectal adenoma was tested by targeted metabolomic analysis. A model based on gut microbiome-associated metabolites was established and evaluated in an independent validation cohort.ResultsIn total, 885 serum metabolites were significantly altered in both CRC and adenoma, including eight gut microbiome-associated serum metabolites (GMSM panel) that were reproducibly detected by both targeted and untargeted metabolomics analysis and accurately discriminated CRC and adenoma from normal samples. A GMSM panel-based model to predict CRC and colorectal adenoma yielded an area under the curve (AUC) of 0.98 (95% CI 0.94 to 1.00) in the modelling cohort and an AUC of 0.92 (83.5% sensitivity, 84.9% specificity) in the validation cohort. The GMSM model was significantly superior to the clinical marker carcinoembryonic antigen among samples within the validation cohort (AUC 0.92 vs 0.72) and also showed promising diagnostic accuracy for adenomas (AUC=0.84) and early-stage CRC (AUC=0.93).ConclusionGut microbiome reprogramming in patients with CRC is associated with alterations of the serum metabolome, and GMSMs have potential applications for CRC and adenoma detection.</description><subject>Adenoma</subject><subject>Adenoma - diagnosis</subject><subject>Antigens</subject><subject>Bacteria</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor</subject><subject>Carcinoembryonic antigen</subject><subject>Chromatography</subject><subject>colorectal adenomas</subject><subject>Colorectal cancer</subject><subject>Colorectal carcinoma</subject><subject>Colorectal Neoplasms - genetics</subject><subject>Digestive system</subject><subject>Feces</subject><subject>Gastrointestinal Microbiome - genetics</subject><subject>Gut Microbiota</subject><subject>Humans</subject><subject>Intestinal microflora</subject><subject>Laboratories</subject><subject>Liquid chromatography</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>Metabolome</subject><subject>Metabolomics</subject><subject>Metagenome</subject><subject>Methods</subject><subject>Microbiomes</subject><subject>Microbiota</subject><subject>Patients</subject><subject>Population</subject><subject>Quality control</subject><subject>Scientific imaging</subject><subject>Statistical analysis</subject><subject>Tumors</subject><issn>0017-5749</issn><issn>1468-3288</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>9YT</sourceid><sourceid>ACMMV</sourceid><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkstu1TAQhiMEoofCC7BAkdiwSfElsZ0NEqq4VKrEBtbWxJmc-iixi-1U6kP1HXGSw-GyQKysmfn-f8b2FMVLSi4o5eLtfk4HN1aMMFJxxmspHhU7WguVI6UeFztCqKwaWbdnxbMYD4QQpVr6tDjjdS0Y52JXPFy5hPsACfsSHIz30cbSD2W6wXIANDCWEybYo_MTZqIvI4Z5WpOdH5dkwDuEMa6S4Edc5Hm0crIm-M5mpIIYvbFrk6PQJoyldauox4QmWe8WpcmmIYe5sQFnMKxNoV8GgOfFkyG3whfH87z49vHD18vP1fWXT1eX76-rriEyVVx1SAeUghvaUwJdC03PuWkokw3JmVzvaNsb07OOcjkMHCkIiiCIBFPz8-Ld5ns7dxP2Bl0KMOrbYCcI99qD1X9WnL3Re3-nW6oaxWg2eHM0CP77jDHpyUaD4wgO_Rw1a4RslZScZPT1X-jBzyF_RaaErFXTMsUzxTYqv2mMAYfTMJToZRv0tg162Qa9bUMWvfr9GifJz-_PQLUB3XT4P8OLX_xpzH8IfgAwzNRt</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Chen, Feng</creator><creator>Dai, Xudong</creator><creator>Zhou, Chang-Chun</creator><creator>Li, Ke-xin</creator><creator>Zhang, Yu-juan</creator><creator>Lou, Xiao-Ying</creator><creator>Zhu, Yuan-Min</creator><creator>Sun, Yan-Lai</creator><creator>Peng, Bao-Xiang</creator><creator>Cui, Wei</creator><general>BMJ Publishing Group Ltd and British Society of Gastroenterology</general><general>BMJ Publishing Group LTD</general><general>BMJ Publishing Group</general><scope>9YT</scope><scope>ACMMV</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BTHHO</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-0947-5091</orcidid><orcidid>https://orcid.org/0000-0003-2034-6351</orcidid></search><sort><creationdate>20220701</creationdate><title>Integrated analysis of the faecal metagenome and serum metabolome reveals the role of gut microbiome-associated metabolites in the detection of colorectal cancer and adenoma</title><author>Chen, Feng ; Dai, Xudong ; Zhou, Chang-Chun ; Li, Ke-xin ; Zhang, Yu-juan ; Lou, Xiao-Ying ; Zhu, Yuan-Min ; Sun, Yan-Lai ; Peng, Bao-Xiang ; Cui, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-b507t-38be1fe763c1d10ab9a5d33c512750d108beb19dccd2b137ff3e1a61ea607ac43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adenoma</topic><topic>Adenoma - diagnosis</topic><topic>Antigens</topic><topic>Bacteria</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor</topic><topic>Carcinoembryonic antigen</topic><topic>Chromatography</topic><topic>colorectal adenomas</topic><topic>Colorectal cancer</topic><topic>Colorectal carcinoma</topic><topic>Colorectal Neoplasms - genetics</topic><topic>Digestive system</topic><topic>Feces</topic><topic>Gastrointestinal Microbiome - genetics</topic><topic>Gut Microbiota</topic><topic>Humans</topic><topic>Intestinal microflora</topic><topic>Laboratories</topic><topic>Liquid chromatography</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>Metabolome</topic><topic>Metabolomics</topic><topic>Metagenome</topic><topic>Methods</topic><topic>Microbiomes</topic><topic>Microbiota</topic><topic>Patients</topic><topic>Population</topic><topic>Quality control</topic><topic>Scientific imaging</topic><topic>Statistical analysis</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Feng</creatorcontrib><creatorcontrib>Dai, Xudong</creatorcontrib><creatorcontrib>Zhou, Chang-Chun</creatorcontrib><creatorcontrib>Li, Ke-xin</creatorcontrib><creatorcontrib>Zhang, Yu-juan</creatorcontrib><creatorcontrib>Lou, Xiao-Ying</creatorcontrib><creatorcontrib>Zhu, Yuan-Min</creatorcontrib><creatorcontrib>Sun, Yan-Lai</creatorcontrib><creatorcontrib>Peng, Bao-Xiang</creatorcontrib><creatorcontrib>Cui, Wei</creatorcontrib><collection>BMJ Open Access Journals</collection><collection>BMJ Journals:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>BMJ Journals</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Gut</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Feng</au><au>Dai, Xudong</au><au>Zhou, Chang-Chun</au><au>Li, Ke-xin</au><au>Zhang, Yu-juan</au><au>Lou, Xiao-Ying</au><au>Zhu, Yuan-Min</au><au>Sun, Yan-Lai</au><au>Peng, Bao-Xiang</au><au>Cui, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integrated analysis of the faecal metagenome and serum metabolome reveals the role of gut microbiome-associated metabolites in the detection of colorectal cancer and adenoma</atitle><jtitle>Gut</jtitle><stitle>Gut</stitle><addtitle>Gut</addtitle><date>2022-07-01</date><risdate>2022</risdate><volume>71</volume><issue>7</issue><spage>1315</spage><epage>1325</epage><pages>1315-1325</pages><issn>0017-5749</issn><eissn>1468-3288</eissn><abstract>ObjectiveTo profile gut microbiome-associated metabolites in serum and investigate whether these metabolites could distinguish individuals with colorectal cancer (CRC) or adenoma from normal healthy individuals.DesignIntegrated analysis of untargeted serum metabolomics by liquid chromatography-mass spectrometry and metagenome sequencing of paired faecal samples was applied to identify gut microbiome-associated metabolites with significantly altered abundance in patients with CRC and adenoma. The ability of these metabolites to discriminate between CRC and colorectal adenoma was tested by targeted metabolomic analysis. A model based on gut microbiome-associated metabolites was established and evaluated in an independent validation cohort.ResultsIn total, 885 serum metabolites were significantly altered in both CRC and adenoma, including eight gut microbiome-associated serum metabolites (GMSM panel) that were reproducibly detected by both targeted and untargeted metabolomics analysis and accurately discriminated CRC and adenoma from normal samples. A GMSM panel-based model to predict CRC and colorectal adenoma yielded an area under the curve (AUC) of 0.98 (95% CI 0.94 to 1.00) in the modelling cohort and an AUC of 0.92 (83.5% sensitivity, 84.9% specificity) in the validation cohort. The GMSM model was significantly superior to the clinical marker carcinoembryonic antigen among samples within the validation cohort (AUC 0.92 vs 0.72) and also showed promising diagnostic accuracy for adenomas (AUC=0.84) and early-stage CRC (AUC=0.93).ConclusionGut microbiome reprogramming in patients with CRC is associated with alterations of the serum metabolome, and GMSMs have potential applications for CRC and adenoma detection.</abstract><cop>England</cop><pub>BMJ Publishing Group Ltd and British Society of Gastroenterology</pub><pmid>34462336</pmid><doi>10.1136/gutjnl-2020-323476</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0947-5091</orcidid><orcidid>https://orcid.org/0000-0003-2034-6351</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0017-5749
ispartof Gut, 2022-07, Vol.71 (7), p.1315-1325
issn 0017-5749
1468-3288
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_9185821
source MEDLINE; PubMed Central
subjects Adenoma
Adenoma - diagnosis
Antigens
Bacteria
Biomarkers
Biomarkers, Tumor
Carcinoembryonic antigen
Chromatography
colorectal adenomas
Colorectal cancer
Colorectal carcinoma
Colorectal Neoplasms - genetics
Digestive system
Feces
Gastrointestinal Microbiome - genetics
Gut Microbiota
Humans
Intestinal microflora
Laboratories
Liquid chromatography
Mass spectrometry
Mass spectroscopy
Metabolism
Metabolites
Metabolome
Metabolomics
Metagenome
Methods
Microbiomes
Microbiota
Patients
Population
Quality control
Scientific imaging
Statistical analysis
Tumors
title Integrated analysis of the faecal metagenome and serum metabolome reveals the role of gut microbiome-associated metabolites in the detection of colorectal cancer and adenoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T18%3A38%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integrated%20analysis%20of%20the%20faecal%20metagenome%20and%20serum%20metabolome%20reveals%20the%20role%20of%20gut%20microbiome-associated%20metabolites%20in%20the%20detection%20of%20colorectal%20cancer%20and%20adenoma&rft.jtitle=Gut&rft.au=Chen,%20Feng&rft.date=2022-07-01&rft.volume=71&rft.issue=7&rft.spage=1315&rft.epage=1325&rft.pages=1315-1325&rft.issn=0017-5749&rft.eissn=1468-3288&rft_id=info:doi/10.1136/gutjnl-2020-323476&rft_dat=%3Cproquest_pubme%3E2674859283%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2674859283&rft_id=info:pmid/34462336&rfr_iscdi=true